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Consider exponential Brownian motion
2
S(t) _ e(r—a /2)t+aWt, t >0,

where W; is Brownian motion, r > 0, o € R constants. Its time
average is

A(T) = _1,_/0T5(t)dt, T>0.

Empirical discovery: S(T) and A(T) typically highly correlated —
coefficient ~ 0.85.

Problem: Calculating correlation coefficient is tricky.

Surprise: Divided differences occur naturally in the analysis, leading
to great simplification and new insights from approximation theory.
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Lévy and Cieselski subdivision-style construction of Brownian
motion

Let {Z(q) : g € Q} be independent normalized Gaussian random
variables. Define B(0) =1 and

B(k)=B(k—1)+ Z(k), k=1,2,....

Then define
B(k + 1/2>
2!7

(o))
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Now it was already known that

E (A(T)?)
is given by
2e(2r+o—2)T 2 1 T
(r+o02)(2r+02)T T <2r+a2 o+ 02>

Surprise: This is a divided difference:

E (A(T)?) = 2exp[0, rT, (2r + o) T].
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Key fact: ES(t) = e".
Simple link with divided differences:

1 T
EA(T) = = /0 ES(t) dt
rT 1

rT
= expl0, rT].

Coincidence? Let's try another.
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We need a simple Lemma:
ES(a)S(b) = e?(r+o®) gbr for0 <a<b.

Proof: Straightforward Brownian motion exercise.
Then

;
ES(T)A(T) = T—l/ ES(t)S(T) dt
0

-
_ T—l/ e(r+a2)terT dt
0
e(2r+0'2)T —e'T
(r+02)T
= exp[rT,(2r +03)T].
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Similarly

E(A(T)?) = T2/0T(/TE5(t1)5(t2)dt2) dt;

0

= 2T—2/0T(/0t1 ES(t1)S(t2) dtz) dt

T t1 5
- 2T—2/ (/ (e gty ) dity
0 0

T (rdo®)ty _ 1
_ e
= 2T 2/(; ertl (W) dtl

— oy (el 2r ) T] - e, 7]

= 2exp[0, rT,(2r + 02)T],
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Now we expect to see divided differences:

ES(T)A(T) —ES(T)EA(T)
= exp[rT,(2r+ o) T]— e (e —1)/(rT)
= exp[rT,(2r + 0®)T] — exp[rT, 2rT]
2T exp[rT,2rT,(2r + 02) T],

and for the variance

VS(T)
= E(S(T)*) — (BS(T))?
e(2r+a2)T _ 2T

= o*Texp[2rT,(2r +0°)T].
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Finally, the correlation coefficient R is given by

exp[rT,2rT,(2r + 02)T]
V2exp[2rT, (2r + 02) T]exp[0, rT,2rT, (2r + 02)T]

Two obvious questions arise:

@ Why do these iterated integrals lead to divided differences?
e So what?
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Hermite—Genocchi

Let f € C(")(R) and let ag, a1, ..., an be real numbers. Then

flao, a1, ..., an]

= / (") (toag + trar + - + tnan) dty - - - dtn,
Sn

1 1=t n
= /dtl“'/ Tt FO tka)
0 0 o

integrating over the simplex
n
So={t=(t1,ta,...,t;) ER?: Ztk <1}
k=1

and
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For the exponential function,

explag, ..., an] = / exp(z tkag) dty - - - dt,.
Sn

k=0

For any nonsingular matrix

V=_(w - v,)eR™"
let

K(V) = conv{0, vi,..., vp}.
Then i

-
exp(a’' y)dy
]det V‘ K(V) ( )

is equal to

exp[0, (VT a)1,...,(VTa),).

[(VTa); is jth component of VTa]
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1
11
V = ,
11 1
then
1 Xn X2 n
/ dx,,/ dx,,l--./ dxy exp Zakxk
0 0 0

k=1
=exp[0,ap, a0+ an-1,...,an +an-1+--- +a1].
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Now we can compute higher moments of A(T). We obtain
E(A(T)™) = mlexp[bo T, b1 T,..., bmT],

where
bi = rk +o*k(k —1)/2, k>0.
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So what? Divided differences allow us to use the rich analytic
toolbox of approximation theory:

e If r = 02, then the correlation coefficient
R =+/3/2=0.866...
@ Theorem[B and Fretwell] For any r > 0 and o, the correlation

coefficient satisfies R > Vol 0.7071...

Thus the time-average is a remarkably good predictor for asset's
price in the geometric Brownian motion universe.
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In fact the correlation coefficient inequality is a special case of the
following
Theorem Let h > 0 and define

En(x) = exp[0, —h, —2h, ..., —nh, x|, x€R, n>0.
Then (En(x)) is a log-concave sequence, i.e.
Ent1(x)En—1(x) < E,,(x)z, for n > 1.

Log-concave sequences: Enormous literature. See, e.g., Wilf,
Generatingfunctionology.
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Special Case: Define
T ok
Rm(er) = Zk R

for non-negative integer m and a € R. Thus Ry («) is the Taylor
remainder (after m+ 1 terms) for the exponential function. Further

Rm() = o™ exp[0,0,...,0,q].

m+1

Furthermore,

R () = Rm-1(c), form>1a€eR.
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Lemma The exponential function Taylor remainders satisfy

Rm+ (O[) —1_ 1
Rm(c) (m+ 1)'exp[0,0,...,0,a]
m+1
Proof
1— Rm—i—l(a) — Rm(a) B Rm+1(a)
Rm(«) Rm(«)
_ pm+1(a) B pm(a)
Rm(«)
C¥m+1
" (m+ 1) Rm(c)
_ 1
~ (m+1)lexp[0,0,...,0,a]
———

m+1
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However o — exp[0,0,...,0,a] is an increasing function, with

m—+1
derivative
exp[0,0,...,0,a, a].
m+1
Corollary Rm41(c)/Rm(c) is an increasing function.
Proof
m+1
iRmH(oa) B exp[0,0,...,0,a, ]
da Rp(a) — (m+1)exp[0,0,...,0, a2
m+1
Hence
R,,,(oz)2 > Rmt1(@)Rm—1(), form>1and a € R.
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Now, when h =0,

so (Em()) is also log-concave, i.e.

exp[0,0,...,0,a]exp[0,0,...,0,a] <exp[0,0,...,0,a]>

m+1 m—1 m
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Is it only true for exponentials?
Maple experiments show that

[0, h,2h, ..., nh], h >0,
is a log-concave sequence for many (all?) completely monotonic
functions, i.e. (—1)"f("(x) >0, x > 0.

Bernstein—Widder Theorem: f : [0,00) — R is completely
monotonic if and only if

f(x)= / e du(s), x>0,
0

for some positive Borel measure 1 on [0, 00).
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Let X be a Lévy-Stable process. Then the natural logarithm of its
characteristic function is given by n

InE[eX?] = —k*|0]*(1 — iB(sign O) tan &) 4+ imf  if a # 1
| —Kl0l(1 + iB2(sign 0) In|6]) +im  ifa=1

where o € (0,2], k > 0, and 3 € [—1, 1]; we write X ~ S,(k, 8, m)
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Then

S(T)=S(t)exp((r+u)(T —t) —oX7_4t),
where X7_; ~ S, ((T - t)l/o‘, 1, O). For risk-neutrality,
p = o%sec(an/2).
The correlation coefficient satisfies

exp[rT,2rT,(2r + u(2 —2%))T]

~ 2exp[2rT, (2r + (2 — 20)) T] expl0, 1T, 2rT, (2r + (2 — 22)) 7]

Theorem R > 1/+/2.
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