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Consider exponential Brownian motion

S(t) = e(r−σ
2/2)t+σWt , t ≥ 0,

where Wt is Brownian motion, r ≥ 0, σ ∈ R constants. Its time
average is

A(T ) =
1

T

∫ T

0
S(t) dt, T > 0.

Empirical discovery: S(T ) and A(T ) typically highly correlated –
coefficient ≈ 0.85.
Problem: Calculating correlation coefficient is tricky.
Surprise: Divided differences occur naturally in the analysis, leading
to great simplification and new insights from approximation theory.
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Lévy and Cieselski subdivision-style construction of Brownian
motion
Let {Z (q) : q ∈ Q} be independent normalized Gaussian random
variables. Define B(0) = 1 and

B(k) = B(k − 1) + Z (k), k = 1, 2, . . . .

Then define

B

(
k + 1/2

2n

)
=

1

2

(
B

(
k

2n

)
+ B

(
k + 1

2n

))
+ 2−1−n/2Z

(
k + 1/2

2n

)
.
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Now it was already known that

E
(
A(T )2

)
is given by

2e(2r+σ
2)T

(r + σ2)(2r + σ2)T
+

2

rT 2

(
1

2r + σ2
− erT

r + σ2

)
.

Surprise: This is a divided difference:

E
(
A(T )2

)
= 2 exp[0, rT , (2r + σ2)T ].
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Key fact: ES(t) = ert .
Simple link with divided differences:

EA(T ) =
1

T

∫ T

0
ES(t) dt

=
erT − 1

rT
= exp[0, rT ].

Coincidence? Let’s try another.
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We need a simple Lemma:

ES(a)S(b) = ea(r+σ
2)ebr , for 0 ≤ a ≤ b.

Proof: Straightforward Brownian motion exercise.
Then

ES(T )A(T ) = T−1
∫ T

0
ES(t)S(T ) dt

= T−1
∫ T

0
e(r+σ

2)terT dt

=
e(2r+σ

2)T − erT

(r + σ2)T

= exp[rT , (2r + σ2)T ].
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Similarly

E(A(T )2) = T−2
∫ T

0

(∫ T

0
ES(t1)S(t2) dt2

)
dt1

= 2T−2
∫ T

0

(∫ t1

0
ES(t1)S(t2) dt2

)
dt1

= 2T−2
∫ T

0

(∫ t1

0
er(t1+t2)eσ

2t2 dt2
)
dt1

= 2T−2
∫ T

0
ert1
(e(r+σ2)t1 − 1

r + σ2

)
dt1

=
2

(r + σ2)T

[
exp[0, (2r + σ2)T ]− exp[0, rT ]

]
= 2 exp[0, rT , (2r + σ2)T ],
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Now we expect to see divided differences:

ES(T )A(T )− ES(T )EA(T )

= exp[rT , (2r + σ2)T ]− erT (erT − 1)/(rT )

= exp[rT , (2r + σ2)T ]− exp[rT , 2rT ]

= σ2T exp[rT , 2rT , (2r + σ2)T ],

and for the variance

VS(T )

= E(S(T )2)− (ES(T ))2

= e(2r+σ
2)T − e2rT

= σ2T exp[2rT , (2r + σ2)T ].
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Finally, the correlation coefficient R is given by

exp[rT , 2rT , (2r + σ2)T ]√
2 exp[2rT , (2r + σ2)T ] exp[0, rT , 2rT , (2r + σ2)T ]

.

Two obvious questions arise:

Why do these iterated integrals lead to divided differences?

So what?
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Hermite–Genocchi

Let f ∈ C (n)(R) and let a0, a1, . . . , an be real numbers. Then

f [a0, a1, . . . , an]

=

∫
Sn

f (n)(t0a0 + t1a1 + · · ·+ tnan) dt1 · · · dtn,

=

∫ 1

0
dt1 · · ·

∫ 1−
∑n−1

k=1 tk

0
dtn f (n)(

n∑
k=0

tkak)

integrating over the simplex

Sn = {t = (t1, t2, . . . , tn) ∈ Rn
+ :

n∑
k=1

tk ≤ 1}

and

t0 = 1−
n∑

k=1

tk .
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For the exponential function,

exp[a0, . . . , an] =

∫
Sn

exp(
n∑

k=0

tkak) dt1 · · · dtn.

For any nonsingular matrix

V = (v1 · · · vn) ∈ Rn×n,

let
K (V ) = conv{0, v1, . . . , vn}.

Then
1

| detV |

∫
K(V )

exp(aT y) dy

is equal to
exp[0, (V Ta)1, . . . , (V

Ta)n].

[(V Ta)j is jth component of V Ta.]
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If

V =


1
1 1
...

. . .

1 1 · · · 1

 ,

then ∫ 1

0
dxn

∫ xn

0
dxn−1 · · ·

∫ x2

0
dx1 exp

(
n∑

k=1

akxk

)
= exp[0, an, an + an−1, . . . , an + an−1 + · · ·+ a1].
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Now we can compute higher moments of A(T ). We obtain

E (A(T )m) = m! exp[b0T , b1T , . . . , bmT ],

where
bk = rk + σ2k(k − 1)/2, k ≥ 0.
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So what? Divided differences allow us to use the rich analytic
toolbox of approximation theory:

If r = σ2, then the correlation coefficient
R =

√
3/2 = 0.866 . . .

Theorem[B and Fretwell] For any r ≥ 0 and σ, the correlation
coefficient satisfies R ≥ 1√

2
= 0.7071 . . .

Thus the time-average is a remarkably good predictor for asset’s
price in the geometric Brownian motion universe.
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In fact the correlation coefficient inequality is a special case of the
following
Theorem Let h ≥ 0 and define

En(x) = exp[0,−h,−2h, . . . ,−nh, x ], x ∈ R, n ≥ 0.

Then (En(x)) is a log-concave sequence, i.e.

En+1(x)En−1(x) ≤ En(x)2, for n ≥ 1.

Log-concave sequences: Enormous literature. See, e.g., Wilf,
Generatingfunctionology.
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Special Case: Define

Rm(α) = eα −
m∑

k=0

αk

k!
,

for non-negative integer m and α ∈ R. Thus Rm(α) is the Taylor
remainder (after m+ 1 terms) for the exponential function. Further

Rm(α) = αm+1 exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α].

Furthermore,

R ′m(α) = Rm−1(α), for m ≥ 1, α ∈ R.
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Lemma The exponential function Taylor remainders satisfy

Rm+1(α)

Rm(α)
= 1− 1

(m + 1)! exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α]
.

Proof

1− Rm+1(α)

Rm(α)
=

Rm(α)− Rm+1(α)

Rm(α)

=
pm+1(α)− pm(α)

Rm(α)

=
αm+1

(m + 1)!Rm(α)

=
1

(m + 1)! exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α]
.
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However α 7→ exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α] is an increasing function, with

derivative
exp[0, 0, . . . , 0︸ ︷︷ ︸

m+1

, α, α].

Corollary Rm+1(α)/Rm(α) is an increasing function.
Proof

d

dα

Rm+1(α)

Rm(α)
=

exp[

m+1︷ ︸︸ ︷
0, 0, . . . , 0, α, α]

(m + 1)! exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α]2
.

Hence

Rm(α)2 ≥ Rm+1(α)Rm−1(α), for m ≥ 1 and α ∈ R.

because

0 ≤ d

dα

Rm+1(α)

Rm(α)
=

Rm(α)2 − Rm+1(α)Rm−1(α)

Rm(α)2
.
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Now, when h = 0,

Rm(α) = Em(α)αm+1,

so (Em(α)) is also log-concave, i.e.

exp[0, 0, . . . , 0︸ ︷︷ ︸
m+1

, α] exp[0, 0, . . . , 0︸ ︷︷ ︸
m−1

, α] ≤ exp[0, 0, . . . , 0︸ ︷︷ ︸
m

, α]2.
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Is it only true for exponentials?
Maple experiments show that

f [0, h, 2h, . . . , nh], h > 0,

is a log-concave sequence for many (all?) completely monotonic
functions, i.e. (−1)nf (n)(x) ≥ 0, x ≥ 0.
Bernstein–Widder Theorem: f : [0,∞)→ R is completely
monotonic if and only if

f (x) =

∫ ∞
0

e−xs dµ(s), x ≥ 0,

for some positive Borel measure µ on [0,∞).
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Let X be a Lévy-Stable process. Then the natural logarithm of its
characteristic function is given by n

lnE[e iXθ] =

{
−κα|θ|α(1− iβ(sign θ) tan απ

2 ) + imθ if α 6= 1

−κ|θ|(1 + iβ 2
π (sign θ) ln|θ|) + imθ if α = 1

where α ∈ (0, 2], κ > 0, and β ∈ [−1, 1]; we write X ∼ Sα(κ, β,m)
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Then
S(T ) = S(t) exp ((r + µ)(T − t)− σXT−t) ,

where XT−t ∼ Sα
(
(T − t)1/α, 1, 0

)
. For risk-neutrality,

µ = σα sec(απ/2).
The correlation coefficient satisfies

R =
exp[rT , 2rT , (2r + µ(2− 2α))T ]√

2 exp[2rT , (2r + µ(2− 2α))T ] exp[0, rT , 2rT , (2r + µ(2− 2α))T ]

Theorem R ≥ 1/
√

2.
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