Exponential Brownian Motion & Approximation Theory

Brad Baxter
Birkbeck College, University of London

November 19, 2019

Collaborators: R. Brummelhuis, S. Fretwell

Consider exponential Brownian motion

$$S(t) = e^{(r-\sigma^2/2)t+\sigma W_t}, \qquad t \ge 0,$$

where W_t is Brownian motion, $r \geq 0$, $\sigma \in \mathbb{R}$ constants. Its time average is

$$A(T) = \frac{1}{T} \int_0^T S(t) dt, \qquad T > 0.$$

Empirical discovery: S(T) and A(T) typically highly correlated – coefficient ≈ 0.85 .

Problem: Calculating correlation coefficient is tricky.

Surprise: Divided differences occur naturally in the analysis, leading to great simplification and new insights from approximation theory.

Lévy and Cieselski subdivision-style construction of Brownian motion

Let $\{Z(q): q\in \mathbb{Q}\}$ be independent normalized Gaussian random variables. Define B(0)=1 and

$$B(k) = B(k-1) + Z(k), \qquad k = 1, 2,$$

Then define

$$B\left(\frac{k+1/2}{2^{n}}\right) = \frac{1}{2}\left(B\left(\frac{k}{2^{n}}\right) + B\left(\frac{k+1}{2^{n}}\right)\right) + 2^{-1-n/2}Z\left(\frac{k+1/2}{2^{n}}\right)$$

.

Now it was already known that

$$\mathbb{E}\left(A(T)^2\right)$$

is given by

$$\frac{2e^{(2r+\sigma^2)T}}{(r+\sigma^2)(2r+\sigma^2)T} + \frac{2}{rT^2}\left(\frac{1}{2r+\sigma^2} - \frac{e^{rT}}{r+\sigma^2}\right).$$

Surprise: This is a divided difference:

$$\mathbb{E}\left(A(T)^2\right) = 2\exp[0, rT, (2r + \sigma^2)T].$$

Key fact: $\mathbb{E}S(t) = e^{rt}$.

Simple link with divided differences:

$$\mathbb{E}A(T) = \frac{1}{T} \int_0^T \mathbb{E}S(t) dt$$
$$= \frac{e^{rT} - 1}{rT}$$
$$= \exp[0, rT].$$

Coincidence? Let's try another.

We need a simple Lemma:

$$\mathbb{E}S(a)S(b) = e^{a(r+\sigma^2)}e^{br}, \quad \text{for } 0 \le a \le b.$$

Proof: Straightforward Brownian motion exercise. Then

$$\mathbb{E}S(T)A(T) = T^{-1} \int_0^T \mathbb{E}S(t)S(T) dt$$

$$= T^{-1} \int_0^T e^{(r+\sigma^2)t} e^{rT} dt$$

$$= \frac{e^{(2r+\sigma^2)T} - e^{rT}}{(r+\sigma^2)T}$$

$$= \exp[rT, (2r+\sigma^2)T].$$

Similarly

$$\mathbb{E}(A(T)^{2}) = T^{-2} \int_{0}^{T} \left(\int_{0}^{T} \mathbb{E}S(t_{1})S(t_{2}) dt_{2} \right) dt_{1}$$

$$= 2T^{-2} \int_{0}^{T} \left(\int_{0}^{t_{1}} \mathbb{E}S(t_{1})S(t_{2}) dt_{2} \right) dt_{1}$$

$$= 2T^{-2} \int_{0}^{T} \left(\int_{0}^{t_{1}} e^{r(t_{1}+t_{2})} e^{\sigma^{2}t_{2}} dt_{2} \right) dt_{1}$$

$$= 2T^{-2} \int_{0}^{T} e^{rt_{1}} \left(\frac{e^{(r+\sigma^{2})t_{1}} - 1}{r + \sigma^{2}} \right) dt_{1}$$

$$= \frac{2}{(r + \sigma^{2})T} \left[\exp[0, (2r + \sigma^{2})T] - \exp[0, rT] \right]$$

$$= 2 \exp[0, rT, (2r + \sigma^{2})T],$$

Now we *expect* to see divided differences:

$$\mathbb{E}S(T)A(T) - \mathbb{E}S(T)\mathbb{E}A(T)$$

$$= \exp[rT, (2r + \sigma^2)T] - e^{rT}(e^{rT} - 1)/(rT)$$

$$= \exp[rT, (2r + \sigma^2)T] - \exp[rT, 2rT]$$

$$= \sigma^2 T \exp[rT, 2rT, (2r + \sigma^2)T],$$

and for the variance

$$VS(T)$$

$$= \mathbb{E}(S(T)^2) - (\mathbb{E}S(T))^2$$

$$= e^{(2r+\sigma^2)T} - e^{2rT}$$

$$= \sigma^2 T \exp[2rT, (2r+\sigma^2)T].$$

Finally, the correlation coefficient R is given by

$$\frac{\exp[rT,2rT,(2r+\sigma^2)T]}{\sqrt{2\exp[2rT,(2r+\sigma^2)T]\exp[0,rT,2rT,(2r+\sigma^2)T]}}.$$

Two obvious questions arise:

- Why do these iterated integrals lead to divided differences?
- So what?

Hermite-Genocchi

Let $f \in C^{(n)}(\mathbb{R})$ and let a_0, a_1, \ldots, a_n be real numbers. Then

$$f[a_0, a_1, ..., a_n]$$

$$= \int_{S_n} f^{(n)}(t_0 a_0 + t_1 a_1 + \dots + t_n a_n) dt_1 \dots dt_n,$$

$$= \int_0^1 dt_1 \dots \int_0^{1 - \sum_{k=1}^{n-1} t_k} dt_n f^{(n)}(\sum_{k=0}^n t_k a_k)$$

integrating over the simplex

$$S_n = \{t = (t_1, t_2, \dots, t_n) \in \mathbb{R}^n_+ : \sum_{k=1}^n t_k \leq 1\}$$

and

$$t_0=1-\sum_{k=1}^n t_k.$$

For the exponential function,

$$\exp[a_0,\ldots,a_n]=\int_{S_n}\exp(\sum_{k=0}^n t_k a_k)\,dt_1\cdots dt_n.$$

For any nonsingular matrix

$$V = (v_1 \quad \cdots \quad v_n) \in \mathbb{R}^{n \times n},$$

let

$$K(V) = \operatorname{conv}\{0, v_1, \dots, v_n\}.$$

Then

$$\frac{1}{|\det V|} \int_{K(V)} \exp(a^T y) \, dy$$

is equal to

$$\exp[0, (V^T a)_1, \dots, (V^T a)_n].$$

 $[(V^T a)_i$ is jth component of $V^T a$.]

lf

$$V = egin{pmatrix} 1 & & & & \ 1 & 1 & & & \ dots & & \ddots & \ 1 & 1 & \cdots & 1 \end{pmatrix},$$

then

$$\int_0^1 dx_n \int_0^{x_n} dx_{n-1} \cdots \int_0^{x_2} dx_1 \exp\left(\sum_{k=1}^n a_k x_k\right)$$

$$= \exp[0, a_n, a_n + a_{n-1}, \dots, a_n + a_{n-1} + \dots + a_1].$$

Now we can compute higher moments of A(T). We obtain

$$\mathbb{E}(A(T)^m) = m! \exp[b_0 T, b_1 T, \dots, b_m T],$$

where

$$b_k = rk + \sigma^2 k(k-1)/2, \quad k \ge 0.$$

So what? Divided differences allow us to use the rich analytic toolbox of approximation theory:

- If $r = \sigma^2$, then the correlation coefficient $R = \sqrt{3}/2 = 0.866...$
- Theorem[B and Fretwell] For any $r \ge 0$ and σ , the correlation coefficient satisfies $R \ge \frac{1}{\sqrt{2}} = 0.7071...$

Thus the time-average is a remarkably good predictor for asset's price in the geometric Brownian motion universe.

In fact the correlation coefficient inequality is a special case of the following

Theorem Let h > 0 and define

$$E_n(x) = \exp[0, -h, -2h, \dots, -nh, x], \qquad x \in \mathbb{R}, \ n \ge 0.$$

Then $(E_n(x))$ is a log-concave sequence, i.e.

$$E_{n+1}(x)E_{n-1}(x) \le E_n(x)^2$$
, for $n \ge 1$.

Log-concave sequences: Enormous literature. See, e.g., Wilf, *Generatingfunctionology*.

Special Case: Define

$$R_m(\alpha) = e^{\alpha} - \sum_{k=0}^m \frac{\alpha^k}{k!},$$

for non-negative integer m and $\alpha \in \mathbb{R}$. Thus $R_m(\alpha)$ is the Taylor remainder (after m+1 terms) for the exponential function. Further

$$R_m(\alpha) = \alpha^{m+1} \exp[\underbrace{0, 0, \dots, 0}_{m+1}, \alpha].$$

Furthermore.

$$R'_m(\alpha) = R_{m-1}(\alpha), \quad \text{for } m \ge 1, \alpha \in \mathbb{R}.$$

Lemma The exponential function Taylor remainders satisfy

$$\frac{R_{m+1}(\alpha)}{R_m(\alpha)} = 1 - \frac{1}{(m+1)! \exp[\underbrace{0,0,\ldots,0}_{m+1},\alpha]}.$$

Proof

$$1 - \frac{R_{m+1}(\alpha)}{R_m(\alpha)} = \frac{R_m(\alpha) - R_{m+1}(\alpha)}{R_m(\alpha)}$$

$$= \frac{p_{m+1}(\alpha) - p_m(\alpha)}{R_m(\alpha)}$$

$$= \frac{\alpha^{m+1}}{(m+1)! R_m(\alpha)}$$

$$= \frac{1}{(m+1)! \exp[0, 0, \dots, 0, \alpha]}.$$

However $\alpha \mapsto \exp[\underbrace{0,0,\ldots,0}_{n+1},\alpha]$ is an increasing function, with

derivative

$$\exp[\underbrace{0,0,\ldots,0}_{m+1},\alpha,\alpha].$$

Corollary $R_{m+1}(\alpha)/R_m(\alpha)$ is an increasing function. Proof

$$\frac{d}{d\alpha}\frac{R_{m+1}(\alpha)}{R_m(\alpha)} = \frac{\exp[0,0,\ldots,0,\alpha,\alpha]}{(m+1)!\exp[0,0,\ldots,0,\alpha]^2}.$$

Hence

$$R_m(\alpha)^2 \ge R_{m+1}(\alpha)R_{m-1}(\alpha),$$
 for $m \ge 1$ and $\alpha \in \mathbb{R}$.

because

$$0 \leq \frac{d}{d\alpha} \frac{R_{m+1}(\alpha)}{R_m(\alpha)} = \frac{R_m(\alpha)^2 - R_{m+1}(\alpha)R_{m-1}(\alpha)}{R_m(\alpha)^2}.$$

Now, when h = 0,

$$R_m(\alpha) = E_m(\alpha)\alpha^{m+1}$$
,

so $(E_m(\alpha))$ is also log-concave, i.e.

$$\exp[\underbrace{0,0,\ldots,0}_{m+1},\alpha]\exp[\underbrace{0,0,\ldots,0}_{m-1},\alpha] \leq \exp[\underbrace{0,0,\ldots,0}_{m},\alpha]^2.$$

Is it only true for exponentials? Maple experiments show that

$$f[0,h,2h,\ldots,nh], \qquad h>0,$$

is a log-concave sequence for many (all?) completely monotonic functions, i.e. $(-1)^n f^{(n)}(x) \ge 0$, $x \ge 0$.

Bernstein–Widder Theorem: $f:[0,\infty)\to\mathbb{R}$ is completely monotonic if and only if

$$f(x) = \int_0^\infty e^{-xs} d\mu(s), \qquad x \ge 0,$$

for some positive Borel measure μ on $[0, \infty)$.

Let X be a Lévy-Stable process. Then the natural logarithm of its characteristic function is given by n

$$\ln \mathbb{E}[e^{iX\theta}] = \begin{cases} -\kappa^{\alpha} |\theta|^{\alpha} (1 - i\beta(\text{sign } \theta) \tan \frac{\alpha\pi}{2}) + im\theta & \text{if } \alpha \neq 1 \\ -\kappa |\theta| (1 + i\beta \frac{2}{\pi} (\text{sign } \theta) \ln |\theta|) + im\theta & \text{if } \alpha = 1 \end{cases}$$

where $\alpha \in$ (0,2], $\kappa >$ 0, and $\beta \in$ [-1,1]; we write $X \sim S_{\alpha}(\kappa,\beta,m)$

Then

$$S(T) = S(t) \exp((r + \mu)(T - t) - \sigma X_{T-t}),$$

where $X_{T-t} \sim S_{\alpha} \left((T-t)^{1/\alpha}, 1, 0 \right)$. For risk-neutrality, $\mu = \sigma^{\alpha} \sec(\alpha \pi/2)$.

The correlation coefficient satisfies

$$R = \frac{\exp[rT, 2rT, (2r + \mu(2 - 2^{\alpha}))T]}{\sqrt{2\exp[2rT, (2r + \mu(2 - 2^{\alpha}))T]\exp[0, rT, 2rT, (2r + \mu(2 - 2^{\alpha}))T]}}$$

Theorem $R \ge 1/\sqrt{2}$.