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1. Introduction

This is a short collection of miscellanies intended for teaching.

Version: 201912181519
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2. Roots of Unity

Example 2.1. Let ω = e2πi/3. Thus 1, ω, ω2 are the three cube roots of unity.
Then it is easily checked that |1− ω| = |1− ω2| =

√
3, so that

|1− ω||1− ω2| = 3.

Example 2.2. Suppose we take the 4 points ±1 and ±i. Then |1 − i| =
√

2, so
that

|1− i||1− (−1)||1− (−i)| = 4.

These examples lead to a conjecture:

(1)

n−1∏
k=1

|1− ωk| = n,

where ω = e2πi/n and n ≥ 2, and here is the Matlab code to check this.

I=sqrt(-1);

n=5;omega=exp(2*pi*I/n); P=1; for k=1:n-1, P=P*abs(1-omega^k); end; P

In fact, we shall see that a stronger statement is true:
Let n > 1 be an integer and let ω = e2πi/n. Thus the complex numbers {ωk :

k = 0, 1, . . . , n− 1} are the nth roots of unity. Thus

zn − 1 = (z − 1)

n−1∏
k=1

(
z − ωk

)
.

Hence
n−1∏
k=1

(
1− ωk

)
= lim
z→1

zn − 1

z − 1
= n,

by de L’Hôpital’s rule.
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3. The Length of the Day

3.1. The Length of the Day at the Solstices. We shall compute the length
of the day at the Summer solstice in the northern hemisphere. The origin of our
coordinate system will be at the centre of the Earth, the x-axis will point directly
towards the Sun, and the z-axis will be perpendicular to the Earth’s orbital plane
and will be directed into the northern hemisphere. We need the following orthonor-
mal vectors to describe the motion of a point on the Earth’s surface:

(2) u1 =

 cosα
0

− sinα

 ,u2 =

 0
1
0

 , and u3 =

 sinα
0

cosα

 ,

where α = 23.5 degrees approximately for the Earth.
The motion of a point at latitude θ is then

(3)

 x(t)
y(t)
z(t)

 = (u1 cos t+ u2 sin t) cos θ + sin θu3.

In particular, we have

x(t) = cos θ cosα cos t+ sin θ sinα

y(t) = cos θ sin t.(4)

At the Summer solstice, day corresponds to x(t) > 0. Thus, solving x(t) = 0, we
obtain the length of day as a function of the latitude θ:

(5) L(θ) = 2 cos−1 (− tan θ tanα) , |θ| ≤ 90− α,
and this gives the length of the day in degrees. Thus the length of the day in hours
is given byLh(θ) = (24/360)L(θ) = (1/15)L(θ), i.e.

(6) Lh(θ) =
2

15
cos−1 (− tan θ tanα) , |θ| ≤ 90− α,

For θ ∈ (90− α, 90), Lh(θ) = 24; similarly L(θ) = 0 for θ ∈ (−90,−90 + α).
The following Matlab code generates the ratio of the longest day to the shortest

day.

alpha= 23.5*pi/180;

theta=0:pi/100:(pi/2) - alpha;

y = acos(-tan(alpha)*tan(theta));

R = y ./ (pi - y);

plot(theta,R)

plot((180/pi)*theta,R)

grid

3.2. The Variation in the Length of the Day during the Year. We solve
the equation

(7)

(
x(t)
y(t)

)T (
cosu
sinu

)
= 0,

where 0 ≤ u ≤ 360 measures orbital time in degrees, i.e. one year corresponds to
360 degrees. Expanding (7), we obtain

(8) cos θ cosα cosu cos t+ cos θ sinu sin t = − sin θ sinα cosu,

or

(9) cos (t− β) =
sin θ sinα cosu

γ
,
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Figure 1. Annual variation in day-length at 51 degrees North

where

(10) γ2 = cos2 θ cos2 α cos2 u+ cos2 θ sin2 u.

Hence the sunrise and sunset times are given by

(11) t± − β = ± cos−1
(
− sin θ sinα cosu

γ

)
,

and the length of the day is then

(12) t+ − t− = 2 cos−1
(
− sin θ sinα cosu

γ

)
,

%

% Displays the yearly variation in the length of the day

% (in hours) at latitude theta, where |theta| < pi/2 - alpha.

%

alpha= 23.5*pi/180;

theta=51*pi/180;

u=0:pi/1000:2*pi;

A = -sin(theta)*sin(alpha)*cos(u);

B = cos(theta)*sqrt( (cos(alpha)^2)*(cos(u).^2) + (sin(u).^2) );

D = 2*acos(A ./ B)*12/pi;

plot(u,D)

%

% D is quite close to sinusoidal

%

%hold on

%plot(u, 12+(max(D)-12)*cos(u),’r’)

%hold off
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4. Distance Seen and Height

If we take the Earth to be a perfect sphere of radius R, then the distance seen
D at height H is given by

(13) D = Rθ

where

(14) (R+H) cos θ = R.

It’s useful to nondimensionalize these by introducing

(15) d =
D

R
and h =

H

R
.

Thus (13) and (14) become

(16) d = θ and (1 + h) cos θ = 1.

Eliminating θ from (16) we obtain

(17) cos d =

[
1

1 + h

]
.

If h is small, then d must also be small, so we have

(18) 1− d2/2 + · · · = 1− h+ · · · ,
or

(19) d2 = 2h.

Returning to our original variables, we find

(20) D2 = 2HR.

Example 4.1. Taking R = 6.4× 106 m and H = 100 m. Then
√

2HR ≈ 36 km.

Example 4.2. Here is some MATLAB code to illustrate the approximation’s worth.

R=6.4e6; h = 0:100:100000;

dtrue = R*acos((1 + h/R).^(-1));

dapprox = (2*R*h).^(1/2);



MISCELLANY 7

5. The Railway problem

This is a very old chestnut indeed. We imagine a straight piece of rail of unit
length which, under thermal expansion, becomes a circular arc of length 1 + δ,
where 1� δ > 0. The rail will bow upwards, attaining a maximum height h at its
centre, and the problem is to determine h, which is surprisingly large.

If we let R denote the radius of the circular arc after expansion, and θ denote
the half-angle subtended at the centre of the circle, then we have the equations

2Rθ = 1 + δ,(21)

R− h = R cos θ,(22)

1

2
= R sin θ.(23)

Of course

(24) h = R (1− cos θ) .

Eliminating R from (21) and (23), we obtain

sin θ

2θ
=

1/2

1 + δ
or

(25)
sin θ

θ
=

1

1 + δ
.

Now 0 < δ � 1 implies that θ is also small, so that

(26)
sin θ

θ
= 1− 1

6
θ2 + · · · = 1− δ + · · · ,

or

(27) θ2 ≈ 6δ.

Substituting this approximation in (21) yields

(28) R =
1 + δ

2θ
≈ 1 + δ

2
√

6δ
.

Substituing (28) in (24) then provides

h ≈ Rθ2/2 ≈
(

1 + δ

2
√

6δ

)
6δ

2
=

√
6δ (1 + δ)

4

i.e.

(29) h ≈
√

3δ/8.

This is at the root of the surprising size of h:
√
δ dominates δ for small δ.

Example 5.1. Suppose δ = 10−4, which corresponds to expansion of 10 cm for a
rail of length one kilometre. In this case h =

√
3× 10−4/8 = 6.1m.
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6. A Derivation of the FFT

We choose n = 2M and illustrate the Fast Fourier Transform algorithm, which
computes the DFT in O(M2M ) operations.

Our primary data are the values {f(2πj/2M ) : j = 01, 2, . . . , 2M − 1} of our
function evaluated at the 2M -th roots of one. For each m ∈ {0, 1, . . . ,M − 1}, we
define

(30) F
(m)
jk =

2m−1∑
p=0

f
(
e2πi(

p
2m + k

2M
)
)
e−2πijp/2

m

.

for j = 0, 1, . . . , 2m − 1 and k = 0, 1, . . . , 2M−m − 1. Thus F (m) ∈ C2m×2M−m

. In
other words, each F (m) contains 2M numbers, but their sizes are as follows:

F (0) is 1× 2M ;

F (1) is 2× 2M−1;

F (2) is 22 × 2M−2;

...

F (M−1) is 2M−1 × 2;

F (M) is 2M × 1.

In other words, F (0) is a row vector, F (m) has twice the number of rows as F (m−1),
but half the number of columns, and F (M) is a column vector.

Example 6.1. When M = 3 and m = 2, there are 2 4-transforms.

Example 6.2. When M = 3 and m = 1, there are 4 2-transforms.

We now define a mapping constructing F (m) from F (m−1). Specifically, we divide
the sum over p in (30) into even p and odd p, as follows

(31) F
(m)
jk = Em +Om,

where

(32) Em =

2m−1−1∑
q=0

f(exp(2πi

(
q

2m−1
+

k

2N

)
exp(−2πijq/2m−1)

and
(33)

Om =

2m−1−1∑
r=0

(
f(exp(2πi

(
r

2m−1
+
k + 2N−m

2N

)
exp(−2πijq/2m−1)

)
exp(−πij/2m−1).

Now F (m−1) is a 2m−1×2M−m+1 matrix, but it is useful to slightly abuse notation

noting that Z 3 j 7→ F
(m−1)
jk is a 2m−1-periodic sequence. With this abuse of

notation in mind, we obtain

(34) F
(m)
jk = F

(m−1)
jk + e−πij/2

m−1

F
(m−1)
j,k+2M−m ,

for j = 0, 1, . . . , 2m − 1, k = 0, 1, . . . , 2M−m − 1.
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7. Constrained Optimization

Suppose we are considering investing money in two assets whose returns are
independent random variables X1 and X2. Their distribution is unknown, but we
do know the mean µk = EXk and the variance σ2

k = varXk, for k = 1, 2, and we
shall assume that these variances are strictly positive.

Being risk-averse, we want to divide our investment between the two assets to
minimize our risk. More formally, we have

(35) Y = s1X1 + s2X2, where s1 + s2 = 1.

Now, by the independence of X1 and X2, we have

(36) varY = f(s) = s21σ
2
1 + s22σ

2
2 , s = (s1, s2)

T ∈ R2.

Thus our problem is as follows:

(37)
minimize f(s)
subject to g(s) = 1,

where

(38) g(s) = s1 + s2, s = (s1, s2)
T ∈ R2.

Now the function f(s) satisfies

∇f(s) =

(
2σ2

1s1
2σ2

2s2

)
and

D2f(s) =

(
2σ2

1 0
0 2σ2

2

)
,

and all higher derivatives vanish. In other words, f(s) is a quadratic and satisfies

(39) f(s + h) = f(s) + hT∇f(s) +
1

2
hTD2f(s)h.

Further, the constraint function g(s) is linear and satisfies

(40) g(s + h) = g(s) + hT∇g(s) = g(s) + hTe,

where

(41) ∇g(s) ≡ e =

(
1
1

)
.

One way to understand such problems is via line search: we choose a point
s ∈ R2 and a search direction d ∈ R2 and consider the univariate function

(42) φ(t) = f(s + td), t ∈ R.
Thus

(43) φ(t) = f(s) + tdT∇f(s) +
1

2
t2dTD2f(s)d,

but we also require the search direction to satisfy the linear constraint:

(44) 1 = g(s + td) = g(s) + tdT∇g(s) = 1 + tdT∇g(s),

or

(45) dT∇g(s) = 0

When do we know we are at a minimum? In this case, we must have φ′(0) = 0 for
any d satisfying (45). Hence

(46) dT∇f(s) = dT∇g(s) = 0,

which implies that

(47) ∇f(s) = λ∇g(s),
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for some λ ∈ R. In other words, we have

(48)

(
2σ2

1s1
2σ2

2s2

)
= λ

(
1
1

)
,

which imply that

(49) sk =
1

2
λσ−2k , k = 1, 2, and s1 + s2 = 1.

Thus

λ =
2

σ−21 + σ−22

and

(50) sk =
σ−2k

σ−21 + σ−22

, k = 1, 2.

The resulting minimal variance is then given by

σ2 ≡ f(s)

= σ2
1

σ−41(
σ−21 + σ−22

)2 + σ2
2

σ−42(
σ−21 + σ−22

)2
=

1

σ−21 + σ−22

,

or

(51) σ−2 = σ−21 + σ−22 .

Example 7.1. When σ2
1 = 1/10 and σ2

2 = 1/5, the minimal variance is given by
σ−2 = 10 + 5 = 15, or σ2 = 1/15.

In general, we have

Y = s1X1 + s2X2 =
σ−21 X1 + σ−22 X2

σ−21 + σ−22

and

EY = s1µ1 + s2µ2 =
σ−21 µ1 + σ−22 µ2

σ−21 + σ−22

Thus, if σ1 � σ2, then EY ≈ µ2, which is to be expected, whilst σ1 = σ2 implies
EY = (µ1 + µ2)/2.

7.1. Lagrange Multipliers. The above technique is much more general. Suppose
we have a risk-metric for investments in n assets which is given by

(52) f(s) = sTAs, s ∈ Rn,

where A ∈ Rn×n is a symmetric, positive definite matrix. We want to solve the
constrained optimization problem

(53)
minimize f(s)
subject to g(s) = 1,

where

(54) g(s) = wT s, s ∈ Rn,

where w ∈ Rn is some fixed vector. Then a similar argument implies that

(55) ∇f(s) = λ∇g(s),
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where

(56) ∇f(s) = 2As and ∇g(s) = w.

Hence

(57) s =
1

2
λA−1w and 1 = wT s,

which implies

(58) λ =
2

wTA−1w
and

(59) s =
A−1w

wTA−1w
.

Exercise 7.1. Prove that (59) implies that the corresponding minimal risk-metric
is given by

(60) f(s) = wTA−1w.
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8. The Cholesky Factorization

Let Pn denote the set of all non-negative definite symmetric matrices in Rn×n.
Given any An ∈ Pn, there is a unique lower triangular matrix Ln ∈ Rn×n, with
positive diagonal elements, for which An = LnL

T , and this is called the Cholesky
factorization. This section provides a constructive proof of this result, the factor-
ization being obvious when n = 1.

Let us now consider the problem of computing the Cholesky factorization An+1 =
Ln+1L

T
n+1, where

(61) An+1 =

(
An a
aT b

)
∈ R(n+1)×(n+1),

where a ∈ Rn, b ≥ 0 and we assume that we have already computed the Cholesky
factorization An = LnL

T
n . We define

(62) Ln+1 =

(
Ln 0
pT q

)
,

where p ∈ Rn and q ≥ 0 are to be determined. Then

(63) An+1 =

(
An a
aT b

)
=

(
Ln 0
pT q

)(
LTn p
0T q

)
,

and p and q must therefore satisfy the equations

(64) Lnp = a

and

(65) ‖p‖2 + q2 = b.

It is (65) that presents the difficulty: we must prove that

(66) b ≥ ‖p‖2 = ‖L−1n a‖2

to ensure that q2 ≥ 0. To this end, we shall first deal with the simpler case when
An = In.

Lemma 8.1. Let An = In. Then b ≥ ‖a‖2.

Proof. For any v ∈ Rn and w ∈ R we have

0 ≤
(

v
w

)T (
In a
aT b

)(
v
w

)
= vTv + 2wvTa + bw2

= ‖v + wa‖2 +
(
b− ‖a‖2

)
w2.

Setting w = 1 and v = −a, we obtain 0 ≤ b− ‖a‖2, as desired. �

To extend this result to the original case, we use the following trick to relate the
general An+1 to the case where An = In.(

L−1n 0
0T 1

)(
An a
aT b

)(
L−Tn 0
0T 1

)
=

(
L−1n AnL

−T
n L−1n a(

L−1n a
)T

b

)
=

(
In L−1n a(

L−1n a
)T

b

)
.
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Hence Lemma 8.1 implies that

b ≥ ‖L−1n a‖2,
which is (66), as required.

Students are often be more familiar with the square-root defined by A1/2 =
QD1/2ATQ, where A = QDQT is the spectral factorization of A, rather than
the Cholesky factorization A = LLT . Thus (A1/2)2 = LLT , and it can be shown
that L = A1/2W , where W is an orthogonal matrix. [Essentially the argument is as
follows. If we compute the SVD L = USV T , where U and V are orthogonal matrices
and S is the diagonal matrix of singular values of L, then LLT = (USV T )(V SUT ) =
US2UT = A = QDQT . Hence U = Q and S = D1/2. Thus L = QD1/2V T =
A1/2W , where W = QV T .]

With this in mind, we see that (66) becomes

(67) b ≥ ‖L−1n a‖2 = ‖A−1/2n a‖2 = aTA−1n a.

Once we know condition (67), it’s possible to remove all of the scaffolding used
above, although I believe most readers will find the more circuitous route described
above useful: it’s often good to leave some scaffolding in place!

Lemma 8.2. Let An ∈ Rn×n be any symmetric non-negative definite matrix and
define An+1 ∈ R(n+1)×(n+1) by (61). Then An+1 is non-negative definite if and
only if

(68) b ≥ aTA−1n a.

Proof. For any v ∈ Rn and w ∈ R we have

0 ≤
(

v
w

)T (
An a
aT b

)(
v
w

)
= vTAnv + 2wvTa + bw2

= ‖A1/2
n v + wA−1/2n a‖2 +

(
b− aTA−1n a

)
w2.

[How did I complete the square here? The key point is that vTAnv = (A
1/2
n v)T (A

1/2
n v),

which implies that we must then write the second term as vTa = (A
1/2
n v)T (A

−1/2
n a).]

If An+1 is non-negative definite, then setting w = 1 and v = −a we obtain
0 ≤ b − aTA−1n a. Conversely, if b − aTA−1n a ≥ 0, then An+1 is non-negative
definite. �
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9. Conics

9.1. The Ellipse and Hyperbola. Let’s begin with the ellipse and the hyperbola,
which we shall define as contours of the functions

(69) f±(x) = ‖x + s‖ ± ‖x− s‖, x ∈ Rn.
The key trick is to observe that

(70) 4xT s = ‖x + s‖2 − ‖x− s‖2 = f+(x)f−(x).

If f+(x) = α, then f−(x) = 4xT s/α. Adding these equations gives

(71) f+(x) + f−(x) = 2‖x + s‖ = α+
4xT s

α
=
α2 + 4xT s

α
,

and squaring both sides yields the quadratic form

(72) 4‖x + s‖2 =

(
α2 + 4xT s

α

)2

.

The matrix occurring in this quadratic form is

(73) M = 4

(
In −

4

α2
ssT
)
.

Similarly, if f−(x) = α, then f+(x) = 4xT s/α and adding them yields (72) and
(73). The distinction between the contours of f± lies in the eigenvalues of M , which
are 1 (with multiplicity n− 1) and

λ = 4

(
1− 4‖s‖2

α2

)
.

If f+(x) = α, then the triangle inequality implies that

‖s‖ ≤ 1

2
(‖s + x‖+ ‖s− x‖) =

α

2
,

i.e.
4‖s‖2 ≤ α2,

which implies λ ≥ 0, with inequality if and only if x and ±s are collinear. Thus
M is non-negative definite on contours of f+ and M is positive definite when the
contour is not the line segment joining ±s.

In contrast, the triangle inequality also implies that

α = ‖x + s‖ − ‖x− s‖ ≤ ‖x + s− (x− s) ‖ = 2‖s‖,
or 4‖s‖2/α2 ≥ 1 on contours of f−, i.e. λ ≤ 0.

9.2. The Reflector Property. We have

(74) ∇f±(x) =
x + s

‖x + s‖
± x− s

‖x− s‖
.

Then

(75)

(
x + s

‖x + s‖

)T
∇f±(x) = 1± (x + s)

T
(x− s)

‖x + s‖‖x− s‖
.

and

(76)

(
x− s

‖x− s‖

)T
∇f±(x) =

(x + s)
T

(x− s)

‖x + s‖‖x− s‖
± 1.

Thus

(77)

(
x + s

‖x + s‖

)T
∇f±(x) = ±

(
x− s

‖x− s‖

)T
∇f±(x),

which is the reflector property for the ellipse and hyperbola.
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9.3. Conic sections really are conic sections. Let us take a cone of semi-angle
θ in Rn whose axis is the line generated by a unit vector u ∈ Rn, i.e.

(78) C = {x ∈ Rn :
uTx

‖x‖
= ± cos θ}.

In other words, the equation for the cone is

(79)
(
uTx

)2
= ‖x‖2 cos2 θ,

or

(80) xT
(
In cos2 θ − uuT

)
x = 0.

Now let v1,v2, . . . ,vn be any orthonormal basis for Rn and consider the hyperplane
P with normal vector vn at signed distance zn from the origin. In other words,

(81) P = {x =

n∑
k=1

zkvk : z1, z2, . . . , zn−1 ∈ R}.

If we let V ∈ Rn×n be the orthogonal matrix with columns v1, . . . ,vn and substitute
x = V z in (79), then we obtain

(82)
(
zTV Tu

)2
= ‖z‖2 cos2 θ.

Setting

(83) U = V Tu,

we see that (82) becomes

(84)

(
n∑
k=1

zkUk

)2

=

(
n∑
k=1

z2k

)
cos2 θ,

or

(85)

n−1∑
k,`=1

zkz`UkU` + 2znUn

n−1∑
k=1

zkUk + z2nU
2
n =

(
n−1∑
k=1

z2k

)
cos2 θ + z2n cos2 θ.

Hence, writing

ẑ =


z1
z2
...

zn−1

 and Û =


U1

U2

...
Un−1


(85) becomes the quadratic form

(86) ẑTM ẑ− 2znUnẑT Û + z2n
(
cos2 θ − U2

n

)
= 0,

where the matrix M ∈ R(n−1)×(n−1) is given by

(87) M = In−1 cos2 θ − ÛÛT .

Example 9.1. Let us choose vn = u, so that Û = 0 and Un = 1. Then (86)
becomes (

n−1∑
k=1

z2k

)
cos2 θ − z2n sin2 θ = 0,

or
n−1∑
k=1

z2k = z2n tan2 θ.
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The eigenvalues of M are cos2 θ (with multiplicity n− 2) and

µ := cos2 θ − ‖Û‖2.
Now

1 = ‖u‖2 =

n∑
k=1

(
uTvk

)2
= ‖Û‖2 + U2

n,

which implies

(88) µ = cos2 θ −
(
1− U2

n

)
= U2

n − sin2 θ.

Example 9.2. Let n = 3 and suppose µ = 0. Then

‖Û‖2 = cos2 θ

and
Un = ± sin θ.

If q1 = Û/‖Û‖ and q2 ∈ R2 is orthogonal to Û, then the matrix

Q =
(

q1 q2

)
∈ R2×2

is orthogonal and

D := QTMQ =

(
µ 0
0 cos2 θ

)
.

If we let ẑ = Qx, then

(89) cos2 θ x22 ± 2z3 sin θ cos θx1 + z23
(
cos2 θ − sin2 θ

)
= 0.
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Figure 2. The probability that all n birthdays are different

10. The Birthday Problem

This is a traditional probabilistic problem: given n people, whose birthdays are
assumed to be uniformly distributed over the N = 365 days of the year (ignoring
leap years), find the probability that at least two of them share a birthday. Now

(90) P(at least two share a birthday) = 1− P(all birthdays distinct) =: 1− pn.

Now

(91) pn =
N(N − 1)(N − 2) · · · (N − n+ 1)

Nn

and, dividing numerator and denominator by Nn, we obtain

(92) pn =

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 1

N

)
.

In one sense the problem is now solved. The surprise is that pn tends to zero rather
quickly. Indeed, p23 = 0.5073, by direct calculation. However, plotting pn reveals a
suspiciously Gaussian curve, as we see in Figure 2. Why does pn decay so quickly
and can we understand the seemingly Gaussian behaviour?

N=365; n=100; p=1; prob=zeros(1,n);

%

% prob(k) = (1 - 1/N)(1 - 2/N)...(1-k/N)

% = prob(all k+1 bdays different)

%

for k=1:n

p=p*(1-k/N);

prob(k)=p;

end
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Figure 3. x: pn; line: exp(−n(n− 1)/(2N))

First take logarithms:

(93) log pn =

n−1∑
k=1

log

(
1− k

N

)
.

Now

log (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · ,

and the series is convergent for |x| < 1. Thus

(94) log (1− x) = −x− x2

2
− x3

3
− x4

4
− · · · ≤ −x,

for 0 ≤ x < 1. If |x| � 1, then we also have the approximation log (1 + x) ≈ −x.
Thus

(95) log pn ≤ −
n−1∑
k=1

k

N
= −n(n− 1)

2N
,

which implies

(96) pn ≤ e−n(n−1)/(2N).

This explains the rapid decay and the Gaussian resemblance, as we see in Figure 3.
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11. The Bike Problem via the Inclusion–Exclusion Formula

Suppose n cyclists randomly permute their bikes. What is the probability that
at least one cyclist has the correct bike?

More formally, the sample space X consits of all positive permutations of the
integers 1, 2, . . . , n, i.e.

(97) X = {(i1, i2, . . . , in) : i1, . . . , in a permutation of 1, . . . , n}.

We shall assign each of these permutations the same probability 1/n!.
Further, define

(98) Ak = {x ∈ X : ik = k}, for k = 1, 2, . . . , n.

Thus Ak is the set of outcomes for which cyclist k gets bike k. We want to calculate
the probability

P (A1 ∪A2 ∪ · · · ∪An) .

Example 11.1. If n = 3, then the sample space is

X = {(123), (132), (213), (231), (312), (321)}.

Then A1 = {(123), (132)}, A2 = {(123), (321)} and A3 = {(123), (213)}, whilst
P(A1 ∪A2 ∪A3) = 4/6 = 2/3.

The solution requires the inclusion–exclusion formula:

(99) P(A1∪A2∪· · ·∪Ak) =

n∑
`=1

(−1)`−1
∑

1≤k1<k2<···<k`≤n

P(Ak1 ∩Ak2 ∩· · ·∩Ak`).

Exercise 11.1.

P(Ak1 ∩ · · · ∩Akm =
(n−m)!

n!
.

Thus ∑
1≤k1<k2<···<k`≤n

P(Ak1 ∩Ak2 ∩ · · · ∩Ak`) =

(
n

m

)
(n−m)!

n!
=

1

m!
.

Hence

(100) P(A1 ∪ · · · ∪An) = 1− 1

2!
+

1

3!
+ · · ·+ (−1)n−1

n!
→ 1− e−1.

11.1. The Inclusion–Exclusion Formula. For each subset A of the sample space
X, the indicator function IA : X → {0, 1} is defined by IA(x) = 1 if and only if
x ∈ A.

Example 11.2. For Example 11.1 we have

IA1
(123) = IA1

(132) = 1

but

IA1
(213) = IA1

(231) = IA1
(312) = IA1

(321) = 0.

The indicator function has some crucial properties. Firstly

1− IA(x) = IAc(x)

where Ac is the complement of A, i.e. X \A. Further,

IA∩B(x) = IA(x)IB(x).

Further, we use de Morgan’s Law:

(A1 ∪ · · · ∪An)
c

= Ac1 ∩ · · · ∩Acn.
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Thus

IA1∪···∪An(x) = 1− I(A1∪···∪An)c(x)

= 1−
n∏
k=1

(1− IAk
(x)) .
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