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You can download these notes from my office server

http://econ109.econ.bbk.ac.uk/brad/ME/Lectures/

and my home server

http://cato.tzo.com/brad/teaching/ME/
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Theorem

1 If two cubes have edges in the ratio 1 : L, their surface areas
are in the ratio 1 : L2 and their volumes in the ratio 1 : L3.

2 If two shapes are geometrically similar and if the distance
between two points on one of them is to the distance between
the two corresponding points on the second in the ratio 1 : L,
then corresponding areas are in the ratio 1 : L2 and
corresponding volumes in the ratio 1 : L3.

Only consider sets of geometrically similar animals (not necessarily
the same species): each can be described by a single length L, e.g.
the length of a corresponding bone or the total height.
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Theorem

1 The strength of a bone is proportional to its cross-sectional
area and hence to L2.

2 The total weight is proportional to the volume and hence to
L3.

Example

If animal A is three times as high as B, then its bones can
withstand 9 times the weight, but its weight has increased by a
factor of 27. What happens?

Ultimately L3 beats L2, so there is a maximum animal size for a
given geometric shape.
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Power output varies as L2 for three reasons.
1 Rate of heat loss: Muscles are devices for turning chemical

into mechanical energy and their efficiency is about 25%; the
remaining 75% of the energy is waste heat. This heat is lost
through the surface, so its dissipation rate is proportional to
L2. Hence average power output exceeding L2 would lead to
overheating.

2 Oxygen supply: The volume of blood pumped by the heart
per unit time is proportional to L2 too.

3 Physical strength: If the force applied by the foot is T and
the body moves forward a distance d , then the speed v is
given by conservation of energy

Td =
1

2
mv2.

Now T ∝ L2 and d ∝ L, so the LHS is proportional to L3.
The mass m ∝ L3 too, so the speed v does not depend on L.
If t is the time taken for muscle contraction, then
t ∝ L/v ∝ L, so the power output is Td/t ∝ L2.
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Example (Running on the flat)

If an animal is moving at speed v , then the force opposing its
motion, or drag is proportional to its surface area and the square
of its speed, i.e. drag ∝ L2v2, so the power required to overcome
air resistance is ∝ L2v3. The power output is proportional to L2,
so all animals of a given shape should have the same top speed.

In general, the drag force in a fluid (i.e. a liquid or gas) is

drag =
1

2
cDρAv

2

where ρ is the density of the fluid and cD is the drag coefficient:
a dimensionless number used to quantify drag. For example,
cD = 0.82 for a long cylinder, cD ≈ 0.4 for an SUV, but a
streamlined car can achieve cD ≈ 0.2.
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Thus the power needed to push an object through as fluid
increases as the cube of the velocity.

Example

A car travelling at 80 km/h might need only 7.5 kW to overcome
drag, but the same car at 160 km/h needs 60 kW. [For historical
reasons, car power is still given in horsepower in the US and UK, a
unit popularised by James Watt to convey the usefulness of his
steam engines: 10 horsepower is approximately 7.5 kW.
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Terminal Velocity The drag force in a fluid at high speed v is

Fdrag =
1

2
cDρAv

2

where ρ is the density of the fluid and cD is the drag coefficient.
When Fdrag is equal to the weight mg , the body no longer
accelerates and we have reached the terminal velocity

VT =

√
mg

1
2cDρA

=

√
2mg

cDρA

ignoring buoyancy effects (relevant in water for mammals, but not
in air). For humans, VT is roughly 50 m/s, or 180 km/h, so fatal
with high probability.
At low speed v , we find that the terminal velocity VT ∝ L,
because air resistance at low speed v is proportional to the area
(∝ L2) multiplied by v (not v2), while the weight mg ∝ L3.
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Example (Maximum survivable velocity)

The kinetic energy at velocity v is 1
2mv2. If the body comes to

rest over a short fixed distance ∆, then the force F is proportional
to the kinetic energy, i.e.

F =
1

2
mv2/∆ =∝ L3v2.

The maximum force we can tolerate F ∝ L2, so we must have
v2 ∝ L−1, i.e. the maximum survivable velocity

v ∝ 1

L1/2
.
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Example (Running uphill)

If the rate of increase in height is v , then work is done against
gravity at a rate ∝ L3v . Since the power output is ∝ L2, we must
have v ∝ L−1.

Thus horses walk slowly uphill, humans walk, while a dog can run.
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General flight requires aerodynamics beyond the scope of this
course, but we can deal with hovering: a bird produces a
downward jet of air and the momentum of this jet per unit time
equals the lift generated, and hence the weight of the bird.
Let the jet have velocity v and cross-sectional area A. The mass of
air projected downward in unit time is ρAv , where ρ is the air
density. If the bird has mass m, then

mg = ρAv2.

But m ∝ L3, A ∝ L2 (for birds, but not small insects), so v ∝ L1/2.
The power output P generating the jet is the kinetic energy in the
jet per unit time, i.e.

P ∝ 1

2
ρAv × v2 ∝ L3.5.

We know that P ∝ L2, so there is an upper limit to the size of
birds that can hover, which is about 20 kg.
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