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You can download these notes from my office server

http://econ109.econ.bbk.ac.uk/brad/teaching/ME/

and my home server

http://cato.tzo.com/brad/teaching/ME/
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Theorem

1 If two cubes have edges in the ratio 1 : L, their surface areas
are in the ratio 1 : L2 and their volumes in the ratio 1 : L3.

2 If two shapes are geometrically similar and if the distance
between two points on one of them is to the distance between
the two corresponding points on the second in the ratio 1 : L,
then corresponding areas are in the ratio 1 : L2 and
corresponding volumes in the ratio 1 : L3.

Only consider sets of geometrically similar animals (not necessarily
the same species): each can be described by a single length L, e.g.
the length of a corresponding bone or the total height.
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Theorem

1 The strength of a bone is proportional to its cross-sectional
area and hence to L2.

2 The total weight is proportional to the volume and hence to
L3.

Example

If animal A is three times as high as B, then its bones can
withstand 9 times the weight, but its weight has increased by a
factor of 27. What happens?

Ultimately L3 beats L2, so there is a maximum animal size for a
given geometric shape.

Brad Baxter Birkbeck College, University of London ME: Large and Small Extended



Application: BMI
The Body Mass Index (BMI) is defined to be the mass divided
by the square of the height. Thus a male weighing 100 kg whose
height is 1.83 m has a BMI of 100/1.832 = 29.86 kg/m2.
The mass is proportional to the weight and the bone area is
proportional to L2, so BMI is proportional to bone stress in N/m2.
An adult whose BMI is less than 18.5 kg/m2 is considered
underweight, while the above example is considered overweight.

BMI flaws: Humans are only approximately geometrically similar;
for example, there are examples of healthy athletes whose BMI
places them in the obese category because of very high muscle
mass.
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Power output varies as L2 for three reasons.
1 Rate of heat loss: Muscles are devices for turning chemical

into mechanical energy and their efficiency is about 25%; the
remaining 75% of the energy is waste heat. This heat is lost
through the surface, so its dissipation rate is proportional to
L2. Hence average power output exceeding L2 would lead to
overheating.

2 Oxygen supply: The volume of blood pumped by the heart
per unit time is proportional to L2 too.

3 Physical strength: If the force applied by the foot is T and
the body moves forward a distance d , then the speed v is
given by conservation of energy

Td =
1

2
mv2.

Now T ∝ L2 and d ∝ L, so the LHS is proportional to L3.
The mass m ∝ L3 too, so the speed v does not depend on L.
If t is the time taken for muscle contraction, then
t ∝ L/v ∝ L, so the power output is Td/t ∝ L2.
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Kinetic Energy (KE)
KE was not known to Newton but was derived from Newton’s laws
of motion by French physicist and mathematician Émilie du
Châtelet in the early 18th century.
We imagine one dimensional movement along a line caused by a
force F (x) that depends on the position x . By Newton’s Second
Law,

m
d2x

dt2
= F (x).

Trick: Let v = dx/dt and use

d2x

dt2
=

dv

dt
=

dv

dx
× dx

dt
= v

dv

dx
.

Thus we have the differential equation

mv
dv

dx
= F (x)

or
d

dx

(
1

2
mv2

)
= F (x).
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Integrating from position x1 to position x2, we find

1

2
mv(x2)2 − 1

2
mv(x1)2 =

∫ x2

x1

F (x) dx .

If the force is constant, i.e. F (x) ≡ F , then

1

2
mv(x2)2 − 1

2
mv(x1)2 = F (x2 − x1).
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Example (Running on the flat)

If an animal is moving at speed v , then the force opposing its
motion, or drag is proportional to its surface area and the square
of its speed, i.e. drag ∝ L2v2, so the power required to overcome
air resistance is ∝ L2v3. The power output is proportional to L2,
so all animals of a given shape should have the same top speed.

In general, the drag force in a fluid (i.e. a liquid or gas) is

drag =
1

2
cDρAv

2

where ρ is the density of the fluid and cD is the drag coefficient:
a dimensionless number used to quantify drag. For example,
cD = 0.82 for a long cylinder, cD ≈ 0.4 for an SUV, but a
streamlined car can achieve cD ≈ 0.2.

Brad Baxter Birkbeck College, University of London ME: Large and Small Extended



Deriving the drag force Imagine a cuboidal car with cross-sectional
area A moving at speed v through still air. Equivalently, imagine
the car being stationary and the wind moving at speed v towards
the car. In one second, a cuboid of air of length v and
cross-sectional area A hits the front of the car. The mass of air
M = ρAv , where ρ is the air’s density, and so the KE of the air
hitting the car every second is given by

1

2
mv2 =

1

2
ρAv3.

To a first approximation, this is proportional to the power needed
for the car to move at speed v . The constant of proportionality cD
is called the drag coefficient, i.e.

power required to move at v =
1

2
cDρAv

3.
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By conservation of energy, this must equal the work done per
second, which is drag × v , so

drag × v =
1

2
cDρAv

3

or

drag =
1

2
cDρAv

2.
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Braking distance and harm to humans If a car is travelling at speed
v and its braking force F is constant, then its braking distance d
satisfies

Fd =
1

2
mv2,

where m is the mass of the car. In other words, the braking
distance increases quadratically with speed v .

Exercise

The typical braking distance at 40 mph is 24m. What are the
typical braking distances at 60 mph and 70 mph?

Example

The harm done in collision increases with the KE, so reducing
urban speeds from, say, 30 mph to 20 mph reduces KE by roughly
55%.
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Thus the power needed to push an object through the fluid
increases as the cube of the velocity.

Example

A car travelling at 80 km/h might need only 7.5 kW to overcome
drag, but the same car at 160 km/h needs 60 kW. [For historical
reasons, car power is still given in horsepower in the US and UK, a
unit popularised by James Watt to convey the usefulness of his
steam engines: 10 horsepower is approximately 7.5 kW.]

Exercise

Suppose a country reduces the motorway speed limit from 80 mph
to 60 mph. By what percentage will motorway fuel consumption
reduce, assuming that all cars drive at the maximum speed?
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Terminal Velocity The drag force in a fluid at high speed v is

Fdrag =
1

2
cDρAv

2

where ρ is the density of the fluid and cD is the drag coefficient.
When Fdrag is equal to the weight mg , the body no longer
accelerates and we have reached the terminal velocity

VT =

√
mg

1
2cDρA

=

√
2mg

cDρA

ignoring buoyancy effects (relevant in water for mammals, but not
in air). For humans, VT is roughly 50 m/s, or 180 km/h, so fatal
with high probability.
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Thus
VT ∝

√
m/A ∝ L1/2

and the KE at terminal velocity is

1

2
mV 2

T ∝ L4.

It’s the KE at collision that harms or kills.

In Haldane’s words: You can drop a mouse down a thousand-yard
mine shaft; and, on arriving at the bottom, it gets a slight shock
and walks away. A rat would probably be killed, though it can fall
safely from the eleventh story of a building; a man is killed, a horse
splashes.
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Example (Running uphill)

If the rate of increase in height is v , then work is done against
gravity at a rate ∝ L3v . Since the power output is ∝ L2, we must
have v ∝ L−1.

Thus horses walk slowly uphill, humans walk, while a dog can run.
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General flight requires aerodynamics beyond the scope of this
course, but we can deal with hovering: a bird produces a
downward jet of air and the momentum of this jet per unit time
equals the lift generated, and hence the weight of the bird.
Let the jet have velocity v and cross-sectional area A. The mass of
air projected downward in unit time is ρAv , where ρ is the air
density. If the bird has mass m and hovers, then

mg = ρAv2.

But m ∝ L3, A ∝ L2 (for birds, but not small insects), so v ∝ L1/2.
The power output P generating the jet is the kinetic energy in the
jet per unit time, i.e.

P ∝ 1

2
ρAv × v2 ∝ L3.5.

We know that P ∝ L2, so there is an upper limit to the size of
birds that can hover, which is about 20 kg.
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Earlier stated that an animal’s power output is proportional to L2:
P ∝ L2. Thus, for mass M ∝ L3 we expect

P = CMα

where α = 2/3, or

logP = logC + α logM.

Problem: Biologists have computed α for many animals and find
α ≈ 3/4, not 2/3. This is sometimes called Kleiber’s Law, first
noted in 1932. You can find many references online, but the next
graph is from Kleiber (1932): “Body size and metabolism”,
Hilgardia. 6:315–353:

https://hilgardia.ucanr.edu/Abstract/?a=hilg.v06n11p315

Brad Baxter Birkbeck College, University of London ME: Large and Small Extended



Figure: Kleiber’s Law from Kleiber (1932)
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Kleiber’s Law: Really it’s only an approximation, but the key point
seems to be that lungs are fractal: their area does not increase as
L2. Still, the difference is small.

Example (Mice and Elephants)

The mass ratio for elphants and mice is roughly

ME

MM
= 105.

Then the power ratio for the 2/3 power law is

R2/3 =

(
ME

MM

)2/3

= 1010/3

but for Kleiber’s 3/4 power law we find

R3/4 =

(
ME

MM

)3/4

= 1015/4.
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Exercise

Show that
R3/4

R2/3
= 105/12 ≈ 2.6.

Kleiber’s Law conclusion: Many textbooks on mathematical
biology still use P ∝ L2 because the error is small, the insight is
useful and Kleiber’s law is imperfect too. Kleiber’s law is used by
farmers to estimate food needs for animals.
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There are several books that deal with these topics very clearly and
from which I have learnt much. One particularly excellent book is

The Pleasures of Counting, by T. W. Körner, Cambridge University
Press, 1996.

You might also be interested in reading
On Being the Right Size, by J. B. S. Haldane, Oxford University
Press, 1985.
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