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Analysis i1s calculus made rigorous
1600s—1700s: Calculus created by Newton, Leibniz and others.

1700s—1800s: Massive expansion of calculus drove progress in
science and engineering, but found worrying problems. Centuries of
handwaving had led to powerful results, but only partially
understood.

1850— early 1900s: Calculus and the foundations of mathematics
made rigorous. Here are the bare bones (and much is omitted):

o Infinite sets (Cantor); construction of the real numbers
(Cantor, Dedekind, Weierstrass)

e Convergence of sequences and series (Cauchy, Weierstrass)

@ Continuity and differentiability; convergence of Taylor series
(Cauchy, Weierstrass)

@ Integration (Riemann)
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Analysis didn't end in the 19th century. This is where the
mathematics of this course led in the 20th century:

e Early 1900s: Integration again (Borel and Lebesgue) —
Riemann integration wasn't enough.

@ 1920s—1940s: Foundations of Probability Theory
(Kolmogorov, Steinhaus and Wiener) led to new concepts,
e.g. Brownian motion, and a new understanding of probability
and statistics.

@ 1900s-1940s: Mathematical foundations (Peano, Russell,
Hilbert, Turing) and the precise concept of an algorithm lead
to new theoretical insights (Godel's incompleteness theorem)
and, ultimately, the computer and programming languages.

@ 1930s—: New algebraic structures (Hilbert, Banach, Steinhaus)
unify analytical concepts: Banach and Hilbert spaces.
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The natural numbers N = {1,2,3,...}.
The integers Z ={...,-2,-1,0,1,2,...}.
The rational numbers

@Z{S:p,qGZ,q#O}.

BUT there is no rational whose square is 2.

We can construct sequences of rationals that approximate /2 as
closely as we wish. We shall see later that, if we let ag = 1 and
define

1 2
an:—<an_1—|— ), for n € N,
2 dn—1

then (a,) is a sequence of rationals for which a2 — 2, but the
crucial point is that we require infinitely many arithmetic
operations to do this.
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Modern decimal notation (John Napier, early 1600s) makes this
look deceptively easy:

V2 = 1.41421356237309504880168872420969807856967187537694 - - -

but this is really an infinite series, i.e.

4 1 4
2—1 4+ — 4+ —— + — L ...
V2 +1O+1O2+103+
How do we prove that it converges and that the algebraic
properties of (Q extend to the new system? It's the extension
requiring infinitely many operations that divides analysis from

algebra.
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Q is a field:
Definition: A field is a set F together with commutative binary
operations + and X satisfying the following axioms:

@ Foralla,b,ceF,ax(b+c)=(axb)+(axc)

© -+, x have identity elements O, 1, respectively: for all a € I,
a—+ Op nd a x 1p = a.

© For all a € F, there exists —a € F such that a + (—a) = O.

@ For all ac F\ {Of}, there exists a—! € F such that
axal= 1p.

(VY
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Q has more structure: QQ is an ordered field:
Definition An ordered field is a field IF with a subset F, C ¥

satisfying
Q Foralla,belF,, a+beclF, andaxbel,.

@ For all a € I, exactly one of the following is true: either
aclkiora=0ror —acl,.

We say that [, is the set of positive elements of IF and we define

a<pb ifandonlyif b—acl,.
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Q is an ordered field. We shall construct R as an extension of QQ
that is a complete ordered field, i.e. it contains all the
irrationals, such as v/2. To use the terminology we establish later
in the course, R is essentially Q augmented by all convergent
sequences of rationals. But we need some definitions first.

Definition Given any subset A C R, A is bounded above if there
exists u € R for which a < u forall a€ A. If U € R is an upper
bound for which U < u for every upper bound u of A, then we say
that U is the least upper bound. There are two common

notations for this: lub A and sup A.
SUP = SuPrReEMUM
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Exercise: Prove that there is exactly one least upper bound, i.e.
it's unique.

Similarly, we say A is bounded below if there exists ¢ € R for
which ¢ < aforall a€ A. If L € R is the greatest lower bound for
A, then we write L = inf A or L = glb A.

Exercise: Let
A=1{0,1/2,2/3,3/4,4/5,...}.

Show that inf A =0 and supA = 1.
(NF = (NFMIM

(Lo smpLEST)
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In the language we shall explore later in this course, R is Q
extended by including all convergent sequences of rationals. We
can avoid sequences for the moment in a very neat way:

The Completeness Axiom: Every non-empty subset of R that is
bounded above has exactly one least upper bound in R.
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Example: If A= {x € R: x? <2}, then a = sup A € R satisfies
a’ =2

Suppose a° < 2. Now
1\ 2 2 1 2a+1
<3+_> Y T

n n n2 n

—

We know that there exists ng € N such that

no>.7 CD

for otherwise N would be bounded. Hence

—

But then a + nio < a which is nonsense.
Exercise Show that a2 > 2 also leads to a contradiction.
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Crucial Fact: The Completeness Axiom is FALSE in Q.

Thus there is no rational number r which satisfies

r=sup{qgeQ:q* <2}
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Theorem (Approximation Property)

Let S be a nonempty subset of R and let U = sup S. Then, for
every a < U, there exists x € S for which a < x < U. ‘KE "

\ ) -~ ” oL LJ
Proof.
If we had x < a for every x € S, then a would be a smaller upper
bound than U = sup S, contradicting the definition of sup S.
Therefore x > a for at least one x € S. []

v
e

Theorem

N /s unbounded above.

Proof.

If N were bounded above, then U = supN € R, by the

Completeness Axiom. By the Approximation Property, there would
exist some n € N for which U —-1 < n. Butthen n+1> U, i.e. U
Is not an upper bound, which is a contradiction. []
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Let x € IR. Then there exists n € N such that n > x.

If this were not true, then N would be bounded above. [ ]

Theorem (The Archimedean Property of R)
If x>0 and y € R, then there is a positive integer n for which

nx >y.
There is a positive integer n exceeding y/x. []
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It's time to return to some actual numbers. A real number of the

form ; ; ;
1 2 n
r=a+ - —-+-——5+- -+
" T 10 T 102 107
where ag Is a non-negative integer and ai, ..., a, are integers

satisfying 0 < ax < 9 is usually written as
r = ag.ai1d2 - - dpn.

This is called a finite decimal representation of r.
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Theorem (Arbitrarily accurate decimal approximations exist.)

Let x € Ry. Then for every integer n > 1 there exists a finite
decimal r, = ag.ai1as - - - a, such that

1

rngx<rn—|—10n.
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This is really our first algorithm, i.e. essentially a computer
program: we call this a constructive proof.

Let

>\< S={neN:0<n<x}.

[ 1
Then ag = sup S is a non-negative integer and we writef ag = [x],

the greatest integer < x. Thus
TjS. Y)e 3

(%94)= &

Now let a3 = [10x — 10ag], i.e. the greatest integer < 10x — 10ap.
We have 0 < 10x — 10ag = 10(x — ag) < 10, so 0 < a3 < 9 and

ap < x < ag + 1.

1
a; <10x—10ap < a4+ 1, or ao+f—(1)gx<ao—|—all—g.

The algorithm then continues with a, = [10%x — 10%ap — 10ay].
[]
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The previous result tells us two important facts:

©@ We can find infinitely many rational numbers between any two
real numbers.

© We can approximate any real number as closely as we wish.

We say that Q is dense in R.
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Example: Between any two real numbers there is an irrational
number.

To see this, let the interval be (a, b). The trick is to consider the
interval (a 4+ v/2, b+ v/2). We know that this interval contains a
rational number, g say, I.e.

a+VvV2<qg<b+V2 (e
Hence 7"_ 20 = @
a<q—V2<b. Fhen p
v S
Exercise: Prove that g — v/2 is irrational if g € Q.
q q @ c @ %

Exercise: Prove that there are infinitely many irrational numbers in
(a, b).
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One of the motivations for analysis was Cantor’'s new way of
comparing infinite sets.

Definition We say that any two sets X and Y have the same
cardinality if there is a bijection f : X — Y.

Thus two sets have the same cardinality if their elements can be

paired up. In particularly, we say that a set X has cardinality n € N
if there is a bijection f : X — {1,2,...,n}.
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Cantor’s insight was that we could use this definition to compare
infinite sets too. For example, if we let 27 denote the even

Integers, I.e.
27 ={...,—6,—4,-2.0,2,4,6,...},

then f : Z — 27 defined by f(n) = 2n, n € Z, is a bijection. Thus
the even integers have the same cardinality as the integers, even
though 27 is a proper subset of Z.
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Definition We say that a set X is countable if it's a finite set or if
it has the same cardinality as the integers.

Exercise: Show that the set of all odd integers is countable.
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Theorem
The set

N x N={(j,k):j, k €N}

—

IS countable.

Define f(j, k) = 23%. Then f is injective (Why?) from N x N into
a subset of N. []

Theorem

Q is countable.

The function g : N x N — Q given by g(m, n) = m/n is sufficient,
but | will give further details in the lecture. []
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(0,1) ={x € R:0< x <1} is not countable.

Cantor’s diagonal argument sketch.

If (0,1) were countable, then it would be actually be a sequence
ai, az, ..., Where each a, is an infinite decimal

an=_0.ap1ap2..., forneN.
Now define a new A=0.A1A>... € R by

1 ifapn#1,

A, = .
"2 ifap.=1

Then A differs from a,, in the nt" decimal place, a
contradiction. []
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Nonexaminable fun: almost all reals are irrational.
To see this, we shall sketch some ideas from more advanced

analysis. Let g1, @2, ... denote the rational numbers in (0, 1).
Given anyJe > Oz, let | t—_gjj"‘ |
o ~ \
€ €
/n:(qn—W,Qn‘Fﬁ), for n € N.

Then g, € I, and the length of I, is L, = 5. Thus QN (0,1) is
contained in L U L U--- and the “length” of QN (0,1) should be
less than

1 1 1
L1_|_L2_|_L3_|_...:€(§_|_§_|_§_|_...>:6,

Since € > 0 can be as small as we wish, we say that Q N (0, 1) has
measure zero, while (0,1) has measure 1.
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