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Analysis is calculus made rigorous
1600s–1700s: Calculus created by Newton, Leibniz and others.

1700s–1800s: Massive expansion of calculus drove progress in
science and engineering, but found worrying problems. Centuries of
handwaving had led to powerful results, but only partially
understood.

1850– early 1900s: Calculus and the foundations of mathematics
made rigorous. Here are the bare bones (and much is omitted):

Infinite sets (Cantor); construction of the real numbers
(Cantor, Dedekind, Weierstrass)

Convergence of sequences and series (Cauchy, Weierstrass)

Continuity and differentiability; convergence of Taylor series
(Cauchy, Weierstrass)

Integration (Riemann)
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Analysis didn’t end in the 19th century. This is where the
mathematics of this course led in the 20th century:

Early 1900s: Integration again (Borel and Lebesgue) –
Riemann integration wasn’t enough.

1920s–1940s: Foundations of Probability Theory
(Kolmogorov, Steinhaus and Wiener) led to new concepts,
e.g. Brownian motion, and a new understanding of probability
and statistics.

1900s–1940s: Mathematical foundations (Peano, Russell,
Hilbert, Turing) and the precise concept of an algorithm lead
to new theoretical insights (Gödel’s incompleteness theorem)
and, ultimately, the computer and programming languages.

1930s–: New algebraic structures (Hilbert, Banach, Steinhaus)
unify analytical concepts: Banach and Hilbert spaces.
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The natural numbers N = {1, 2, 3, . . .}.
The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
The rational numbers

Q =

{
p

q
: p, q ∈ Z, q 6= 0

}
.

BUT there is no rational whose square is 2.
We can construct sequences of rationals that approximate

√
2 as

closely as we wish. We shall see later that, if we let a0 = 1 and
define

an =
1

2

(
an−1 +

2

an−1

)
, for n ∈ N,

then (an) is a sequence of rationals for which a2n → 2, but the
crucial point is that we require infinitely many arithmetic
operations to do this.
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Modern decimal notation (John Napier, early 1600s) makes this
look deceptively easy:

√
2 = 1.41421356237309504880168872420969807856967187537694 · · ·

but this is really an infinite series, i.e.

√
2 = 1 +

4

10
+

1

102
+

4

103
+ · · ·

How do we prove that it converges and that the algebraic
properties of Q extend to the new system? It’s the extension
requiring infinitely many operations that divides analysis from
algebra.

Brad Baxter Birkbeck College, University of London Real Analysis 1: Foundations



Q is a field:

Definition

A field is a set F together with commutative binary operations +
and × satisfying the following axioms:

1 For all a, b, c ∈ F, a× (b + c) = (a× b) + (a× c).

2 +, × have identity elements 0F, 1F, respectively: for all a ∈ F,
a + 0F = a and a× 1F = a.

3 For all a ∈ F, there exists −a ∈ F such that a + (−a) = 0F.

4 For all a ∈ F \ {0F}, there exists a−1 ∈ F such that
a× a−1 = 1F.
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Q has more structure: Q is an ordered field:

Definition

An ordered field is a field F with a subset F+ ⊂ F satisfying

1 For all a, b ∈ F+, a + b ∈ F+ and a× b ∈ F+.

2 For all a ∈ F, exactly one of the following is true: either
a ∈ F+ or a = 0F or −a ∈ F+.

We say that F+ is the set of positive elements of F and we define

a <F b if and only if b − a ∈ F+.
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Q is an ordered field. We shall construct R as an extension of Q
that is a complete ordered field, i.e. it contains all the
irrationals, such as

√
2. To use the terminology we establish later

in the course, R is essentially Q augmented by all convergent
sequences of rationals. But we need some definitions first.

Definition

Given any subset A ⊂ R, A is bounded above if there exists
u ∈ R for which a ≤ u for all a ∈ A. If U ∈ R is an upper bound
for which U ≤ u for every upper bound u of A, then we say that
U is the least upper bound. There are two common notations for
this: lubA and supA.
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Exercise: Prove that there is exactly one least upper bound, i.e.
it’s unique.

Similarly, we say A is bounded below if there exists ` ∈ R for
which ` ≤ a for all a ∈ A. If L ∈ R is the greatest lower bound for
A, then we write L = inf A or L = glbA.

Exercise: Let
A = {0, 1/2, 2/3, 3/4, 4/5, . . .}.

Show that inf A = 0 and supA = 1.
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In the language we shall explore later in this course, R is Q
extended by including all convergent sequences of rationals. We
can avoid sequences for the moment in a very neat way:

The Completeness Axiom: Every non-empty subset of R that is
bounded above has exactly one least upper bound in R.
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Example

A = {x ∈ R : x2 < 2}, then a = supA ∈ R satisfies a2 = 2.

Suppose a2 < 2. Now(
a +

1

n

)2

= a2 +
2a

n
+

1

n2
≤ a2 +

2a + 1

n
.

We know that there exists n0 ∈ N such that

n0 >
2a + 1

2− a2
,

for otherwise N would be bounded. Hence(
a +

1

n0

)2

≤ a2 +
2a + 1

n0
< a2 + 2− a2 = 2.

But then a + 1
n0
< a which is nonsense.

Exercise Show that a2 > 2 also leads to a contradiction.
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Crucial Fact: The Completeness Axiom is FALSE in Q.

Thus there is no rational number r which satisfies

r = sup{q ∈ Q : q2 < 2}.
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Theorem (Approximation Property)

Let S be a nonempty subset of R and let U = supS. Then, for
every a < U, there exists x ∈ S for which a < x ≤ U.

Proof.

If we had x ≤ a for every x ∈ S , then a would be a smaller upper
bound than U = supS , contradicting the definition of sup S .
Therefore x > a for at least one x ∈ S .

Theorem

N is unbounded above.

Proof.

If N were bounded above, then U = supN ∈ R, by the
Completeness Axiom. By the Approximation Property, there would
exist some n ∈ N for which U − 1 < n. But then n + 1 > U, i.e. U
is not an upper bound, which is a contradiction.
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Theorem

Let x ∈ R. Then there exists n ∈ N such that n > x.

Proof.

If this were not true, then N would be bounded above.

Theorem (The Archimedean Property (or Axiom) of R)

If x > 0 and y ∈ R, then there is a positive integer n for which
nx > y.

Proof.

There is a positive integer n exceeding y/x .
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It’s time to return to some actual numbers. A real number of the
form

r = a0 +
a1
10

+
a2

102
+ · · ·+ an

10n
,

where a0 is a non-negative integer and a1, . . . , an are integers
satisfying 0 ≤ ak ≤ 9 is usually written as

r = a0.a1a2 · · · an.

This is called a finite decimal representation of r .
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Theorem (Arbitrarily accurate decimal approximations exist.)

Let x ∈ R+. Then for every integer n ≥ 1 there exists a finite
decimal rn = a0.a1a2 · · · an such that

rn ≤ x < rn +
1

10n
.
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This is really our first algorithm, i.e. essentially a computer
program: we call this a constructive proof.

Proof.

Let
S = {n ∈ N : 0 ≤ n ≤ x}.

Then a0 = supS is a non-negative integer and we write a0 = [x ],
the greatest integer ≤ x . Thus

a0 ≤ x < a0 + 1.

Now let a1 = [10x − 10a0], i.e. the greatest integer ≤ 10x − 10a0.
We have 0 ≤ 10x − 10a0 = 10(x − a0) < 10, so 0 ≤ a1 ≤ 9 and

a1 ≤ 10x − 10a0 < a1 + 1, or a0 +
a1
10
≤ x < a0 +

a1 + 1

10
.

The algorithm then continues with a2 = [102x − 102a0 − 10a1].
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The previous result tells us two important facts:

1 We can find infinitely many rational numbers between any two
real numbers.

2 We can approximate any real number as closely as we wish.

We say that Q is dense in R.
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Example

Between any two real numbers there is an irrational number.

To see this, let the interval be (a, b). The trick is to consider the
interval (a +

√
2, b +

√
2). We know that this interval contains a

rational number, q say, i.e.

a +
√

2 < q < b +
√

2.

Hence
a < q −

√
2 < b.

Exercise: Prove that q −
√

2 is irrational if q ∈ Q.

Exercise: Prove that there are infinitely many irrational numbers in
(a, b).
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One of the motivations for analysis was Cantor’s new way of
comparing infinite sets.

Definition

We say that any two sets X and Y have the same cardinality if
there is a bijection f : X → Y .

Thus two sets have the same cardinality if their elements can be
paired up. In particularly, we say that a set X has cardinality n ∈ N
if there is a bijection f : X → {1, 2, . . . , n}.
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Cantor’s insight was that we could use this definition to compare
infinite sets too. For example, if we let 2Z denote the even
integers, i.e.

2Z = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .},

then f : Z→ 2Z defined by f (n) = 2n, n ∈ Z, is a bijection. Thus
the even integers have the same cardinality as the integers, even
though 2Z is a proper subset of Z.
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Definition

We say that a set X is countable if it’s a finite set or if it has the
same cardinality as the integers.

Exercise: Show that the set of all odd integers is countable.
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Theorem

The set
N× N = {(j , k) : j , k ∈ N}

is countable.

Proof.

Define f (j , k) = 2j3k . Then f is injective (Why?) from N× N into
a subset of N.

Theorem

Q is countable.

Proof.

The function g : N× N→ Q given by g(m, n) = m/n is sufficient,
but I will give further details in the lecture.
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Theorem

(0, 1) = {x ∈ R : 0 < x < 1} is not countable.

Cantor’s diagonal argument sketch.

If (0, 1) were countable, then it would be actually be a sequence
a1, a2, . . ., where each an is an infinite decimal

an = 0.an,1an,2 . . . , for n ∈ N.

Now define a new A = 0.A1A2 . . . ∈ R by

An =

{
1 if an,n 6= 1,

2 if an,n = 1.
.

Then A differs from an in the nth decimal place, a
contradiction.
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Nonexaminable fun: almost all reals are irrational.
To see this, we shall sketch some ideas from more advanced
analysis. Let q1, q2, . . . denote the rational numbers in (0, 1).
Given any ε > 0, let

In = (qn −
ε

2n+1
, qn +

ε

2n+1
), for n ∈ N.

Then qn ∈ In and the length of In is Ln = ε
2n . Thus Q ∩ (0, 1) is

contained in I1 ∪ I2 ∪ · · · and the “length” of Q ∩ (0, 1) should be
less than

L1 + L2 + L3 + · · · = ε

(
1

2
+

1

22
+

1

23
+ · · ·

)
= ε.

Since ε > 0 can be as small as we wish, we say that Q ∩ (0, 1) has
measure zero, while (0, 1) has measure 1.
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