Real Analysis 2: Sequences

Brad Baxter Birkbeck College, University of London

May 3, 2023

<ロ > < 同 > < 同 > < 三 > < 三 > <

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Ŧ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ ▶

$l_1 \leq l_2$ $l_2 \leq l_1 \Rightarrow l_1 = l_2$

Exercise: Prove that there is exactly one least upper bound, i.e. it's unique.

Similarly, we say A is **bounded below** if there exists $\ell \in \mathbb{R}$ for which $\ell \leq a$ for all $a \in A$. If $L \in R$ is the greatest lower bound for A, then we write $L = \inf A$ or $L = \operatorname{glb} A$.

In the language we shall explore later in this course, \mathbb{R} is \mathbb{Q} extended by including all convergent sequences of rationals. We can avoid sequences for the moment in a very neat way:

The Completeness Axiom: Every non-empty subset of \mathbb{R} that is bounded above has exactly one **least upper bound** in \mathbb{R} .

3

 $\checkmark Q (\sim$

Example

If
$$A = \{x \in \mathbb{R} : x^2 < 2\}$$
, then $a = \sup A \in \mathbb{R}$ satisfies $a^2 = 2$.

Suppose $a^2 < 2$. Now

$$\left(a+rac{1}{n}
ight)^2 = a^2 + rac{2a}{n} + rac{1}{n^2} \leq a^2 + rac{2a+1}{n}$$

We know that there exists $n_0 \in \mathbb{N}$ such that

$$n_0 > rac{2a+1}{2-a^2},$$

for otherwise $\ensuremath{\mathbb{N}}$ would be bounded. Hence

$$\left(a+\frac{1}{n_0}\right)^2 \le a^2+\frac{2a+1}{n_0} < a^2+2-a^2=2.$$

But then $a + \frac{1}{n_0} < a$ which is nonsense. **Exercise** Show that $a^2 > 2$ also leads to a contradiction. Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

Theorem (Approximation Property)

Let S be a nonempty subset of \mathbb{R} and let $U = \sup S$. Then, for every a < U, there exists $x \in S$ for which $a < x \leq U$.

Proof.

If we had $x \le a$ for every $x \in S$, then *a* would be a smaller upper bound than $U = \sup S$, contradicting the definition of $\sup S$. Therefore x > a for at least one $x \in S$.

Theorem

 \mathbb{N} is unbounded above.

Proof.

If \mathbb{N} were bounded above, then $U = \sup \mathbb{N} \in \mathbb{R}$, by the Completeness Axiom. By the Approximation Property, there would exist some $n \in \mathbb{N}$ for which U - 1 < n. But then n + 1 > U, i.e. Uis **not** an upper bound, which is a contradiction.

< □ > < @ > < Ξ >

-∢ ≣ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Theorem

Let $x \in \mathbb{R}$. Then there exists $n \in \mathbb{N}$ such that n > x.

Proof.

If this were not true, then \mathbb{N} would be bounded above.

Theorem (The Archimedean Property (or Axiom) of \mathbb{R})

If x > 0 and $y \in \mathbb{R}$, then there is a positive integer n for which nx > y.

Proof.

There is a positive integer *n* exceeding y/x.

Theorem

There are no infinitesimals in \mathbb{R} : if $a \in \mathbb{R}$ is nonzero, then there exists $N \in \mathbb{N}$ for which 1/n < a for all $n \ge N$.

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n},$$

where a_0 is a non-negative integer and a_1, \ldots, a_n are integers satisfying $0 \le a_k \le 9$ is usually written as

$$r = a_0.a_1a_2\cdots a_n.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■

 $\mathcal{A} \mathcal{A} \mathcal{A}$

This is called a finite decimal representation of r. O. Oqqqqqq= 0.1

Theorem (Arbitrarily accurate decimal approximations exist.)

Let $x \in \mathbb{R}_+$. Then for every integer $n \ge 1$ there exists a finite decimal $r_n = a_0.a_1a_2\cdots a_n$ such that

$$r_n \leq x < r_n + \frac{1}{10^n}.$$

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>

 $\checkmark \land \land \land$

This is really our first algorithm, i.e. essentially a computer program: we call this a **constructive proof**.

Proof.

Let

$$S = \{n \in \mathbb{N} : 0 \le n \le x\}.$$

Then $a_0 = \sup S$ is a non-negative integer and we write $a_0 = [x]$, the greatest integer $\leq x$. Thus

 $a_0 \leq x < a_0 + 1.$

Now let $a_1 = [10x - 10a_0]$, i.e. the greatest integer $\leq 10x - 10a_0$. We have $0 \leq 10x - 10a_0 = 10(x - a_0) < 10$, so $0 \leq a_1 \leq 9$ and

$$a_1 \leq 10x - 10a_0 < a_1 + 1, \quad ext{ or } \quad a_0 + rac{a_1}{10} \leq x < a_0 + rac{a_1 + 1}{10}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

 $\checkmark Q (\sim$

The algorithm then continues with $a_2 = [10^2 x - 10^2 a_0 - 10 a_1]$.

The previous result tells us two important facts:

- We can find infinitely many rational numbers between any two real numbers.
- 2 We can approximate any real number as closely as we wish.

We say that \mathbb{Q} is **dense** in \mathbb{R} .

~

4 E > 4 E >

3

 $\checkmark Q (\sim$

Example

Between any two real numbers there is an irrational number.

To see this, let the interval be (a, b). The trick is to consider the interval $(a + \sqrt{2}, b + \sqrt{2})$. We know that this interval contains a rational number, q say, i.e.

$$a + \sqrt{2} < q < b + \sqrt{2}$$

IRFATIONAL a < q- x < b

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

E

 $\checkmark Q (\sim$

Hence

$$a < q - \sqrt{2} < b$$

Exercise: Prove that $q - \sqrt{2}$ is irrational if $q \in \mathbb{Q}$. Exercise: Prove that there are infinitely many irrational numbers in (a, b).

Definition

We say that a sequence of real numbers a_1, a_2, \ldots is an increasing sequence if

$$\mathsf{a}_1 \leq \mathsf{a}_2 \leq \mathsf{a}_3 \leq \cdots,$$

i.e. $a_k \leq a_{k+1}$ for all $k \in \mathbb{N}$.

Example

Here are 3 increasing sequences:

• The constant sequence $a_k = 1$, for all $k \in \mathbb{N}$, is an increasing sequence, albeit a rather boring example (think of increasing as really meaning non-decreasing, if it helps).

2
$$a_k = 1 - \frac{1}{k}$$
, for $k \in \mathbb{N}$.

J
$$a_k = 10^k$$
, for $k = 0, 1, 2, \dots$ (i.e. the index can start at 0).

Ŧ

< ロ > < 同 > < 三 > < 三 > <

Definition (ϵ , N_{ϵ} definition of continuity)

A real sequence (a_n) is **convergent** with limit $a \in \mathbb{R}$ if, for any positive $\epsilon > 0$, there exists an integer $N \equiv N_{\epsilon}$ for which $-\epsilon < a_n - a < \epsilon$ $|a_n - a| < \epsilon$ OF $a_n - \epsilon < a_n < \epsilon$

for all $n \ge N$. We write $\lim_{n\to\infty} a_n = a$ or $a_n \to a$, as $n \to \infty$.

If a sequence isn't convergent, then we say it's divergent.

Example

 $a_k = 10^k$ and $b_k = (-1)^k$ are divergent sequences.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example

If $a_n = 1$ for all $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. The key point is that $a_n - 1 = 0$, for all n, so that, given any $\epsilon > 0$, we have $|a_n - 1| < \emptyset$ for all n.

Example

If $a_n = 1 - 1/n$, for $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. Indeed, given any $\epsilon > 0$, we have

$$|a_n - 1| = \frac{1}{n} < \epsilon$$

- (山) - (三) - (Ξ) -

Ŧ

for all integer *n* such that $n > 1/\epsilon$, i.e. for all sufficiently large integer *n*, by the Archimedean Property of \mathbb{R} .

Theorem

A real increasing sequence (a_n) that is bounded above is convergent and $\lim_{n\to\infty} a_n = \sup a_n$.

Proof.

Choose any $\epsilon > 0$. If $a = \sup a_n$, then there must be at least one member of the sequence (a_n) , a_N say, in the interval $(a - \epsilon, a)$, for otherwise a would not be the least upper bound. Since (a_n) is an increasing sequence, we have

$$a-\epsilon < a_N \leq a_{N+1} \leq a_{N+2} \leq \cdots \leq a.$$

Ŧ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Thus $\lim_{n\to\infty} a_n = a$.

Example

Let $b_n = 1 + n^{-1}$. We shall prove that $b_n \to 1$ as $n \to \infty$. Thus, given any $\epsilon > 0$,

$$|b_n-1| = |n^{-1}| < \epsilon$$

when $n \geq \# N$ and $N > \epsilon^{-1}$.

Exercise: Are these sequences convergent or divergent? Find their limits if convergent.

$$a_n = (-1)^n, \text{ for } n \in \mathbb{N}.$$

$$a_n = \frac{(-1)^n}{n^2}, \text{ for } n \in \mathbb{N}.$$

$$a_n = \frac{\sin(300n)}{n}, \text{ for } n \in \mathbb{N}.$$

$$a_n = \begin{cases} 1 & \text{if } n = 10^m \text{ for some } m \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

E.

 $\checkmark \land \land \land$

Definition

The absolute value |x| of $x \in \mathbb{R}$ is defined by

$$x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

5900

Theorem

If $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Theorem (The Triangle Inequality)

If $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Proof.

We have

$$-|a| \le a \le |a|$$
 and $-|b| \le b \le |b|$,

and adding these inequalities gives

$$-\left(|a|+|b|
ight)\leq a+b\leq \left(|a|+|b|
ight)$$

which implies

$$|a+b| \le |a|+|b|.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Theorem (Alternative form of Triangle Inequality)

If $a, b \in \mathbb{R}$, then $|a \neq b| \ge ||a| - |b||$.

Proof.

If we let x = a - b and y = b, then x + y = a and the triangle inequality $|x + y| \le |x| + |y|$ becomes $|a| \le |a - b| + |b|$ or

 $|a|-|b|\leq |a-b|.$

Further, if we let x = b - a and y = a, then x + y = b and the triangle inequality becomes $|b| \le |b - a| + |a|$, or

$$|b| - |a| = -(|a| - |b|) \le |a - b|.$$

<ロ > < 同 > < 同 > < 三 > < 三 > <

3

Theorem

A convergent sequence is bounded.

Proof.

If $a_1, a_2, ...$ is a convergent sequence with limit a, then there exists $N \in \mathbb{N}$ for which

$$|a_n-a|<1,$$

for all $n \ge N$. In particular,

$$a-1\leq a_n\leq a+1,$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

for all $n \ge N$. Thus the sequence is bounded.

Unbounded >> divergent NOT bounded >> NOT convergent

Theorem (Sequence Addition)

Suppose $a_n \rightarrow a$ and $b_n \rightarrow b$, as $n \rightarrow \infty$. Then $a_n + b_n \rightarrow a + b$.

Proof.

Given any $\epsilon > 0$, choose a positive integer N so large that both

$$|a_n-a|<\epsilon/2$$
 and $|b_n-b|<\epsilon/2.$

Then

$$egin{aligned} |(a_n+b_n)-(a+b)|&=|(a_n-a)-(b_n-b)|\ &\leq |a_n-a|+|b_n-b|\ &<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon. \end{aligned}$$

EXERCISE: Can -> ca if an -> 9

<ロト < 同ト < 三ト < 三ト -

3

 $\checkmark Q (\sim$

Theorem (Sequence Multiplication)

Suppose $a_n \rightarrow a$ and $b_n \rightarrow b$, as $n \rightarrow \infty$. Then $a_n b_n \rightarrow ab$.

Proof.

Let $u_n = a_n - a$ and $v_n = b_n - b$. Then $u_n \to 0$ and $v_n \to 0$, and $a_n = a + u_n$, $b_n = b + v_n$. Further

$$a_nb_n-ab=(a+u_n)(b+v_n)-ab=av_n+bu_n+u_nv_n.$$

Now, given any $\alpha \in (0,1)$, there exists $N \in \mathbb{N}$ for which $|u_n| < \alpha$ and $|v_n| < \alpha$ when $n \ge N_{\alpha}$. Further, $|u_n v_n| < \alpha^2 < \alpha$, for all $n \ge N_{\alpha}$, since $\alpha \in (0,1)$. Hence

$$\begin{aligned} |a_n b_n - ab| &= |(a + u_n) (b + v_n) - ab| \\ &= |av_n + bu_n + u_n v_n| \\ &\leq |av_n| + |bu_n| + |u_n v_n| < (|a| + |b| + 1) \alpha. \end{aligned}$$

s a a

Hence, given any $\epsilon > 0$, choose $\alpha < \frac{\epsilon}{|a|+|b|+1}$ and $n \ge N_{\alpha}$.

Suppose $a_n \to a$, $b_n \to b$ and $b \neq 0$. We shall soon prove that $a_n/b_n \to a/b$, but we shall need a simple example first.

Example

Let $b_n \rightarrow b$ and initially suppose that b > 0. Then $b_n > 0$ for all sufficiently large n, i.e. a real sequence with positive limit is ultimately positive.

The key point is the definition of convergence: given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $|b_n - b| < \epsilon$. In particular, if we choose $\epsilon = b/2$, then

$$|b_n - b| < b/2,$$

i.e.

 $-b/2 < b_n - b < b/2,$

which implies

$$b/2 < b_n < 3b/2,$$

< □ > < □ > < □ >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

when $n \ge N$.

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

When the limit *b* is negative, we have b = -|b| and setting $\epsilon = |b|/2$ implies

$$-|b|/2 < b_n - b < |b|/2,$$

for (say) $n \ge N$. But we can rewrite this as

$$-|b|/2 < b_n + |b| < |b|/2,$$

whence

$$-3|b|/2 < b_n < -|b|/2,$$

 \mathcal{A}

and $b_n < -|b|/2$ implies that $|b_n| > |b|/2$.

Theorem (Sequence Division)

Let $a_n \rightarrow a$, $b_n \rightarrow b$ and suppose that $b \neq 0$. Then

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.$$

Proof.

There exists $M \in \mathbb{N}$ such that $|b_n| > |b|/2$ for $n \ge M$. Hence

$$\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b-b_n|}{|bb_n|},$$

and, for $n \ge M$, $|b_n| > |b|/2$ implies $\frac{1}{|bb_n|} < \frac{2}{|b|^2}$, so that $\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b - b_n|}{|bb_n|} < \left(\frac{2}{|b|^2}\right)|b - b_n|$

and this can be made arbitrarily small for all sufficiently large n. Thus the sequence $c_n = b_n^{-1}$ is well defined for $n \ge M$ and $c_n \rightarrow b^{-1}$. Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example

Let's use our new knowledge of sequence arithmetic. Recall that $w_n = (3n+1)/(n+4)$, for $n \ge 1$. Then, dividing numerator and denominator by n, we obtain

$$w_n = rac{3+n^{-1}}{1+4n^{-1}} \equiv rac{a_n}{b_n}$$

Now $a_n \rightarrow 3$ and $b_n \rightarrow 1 \neq 0$ (by the Archimedean Property of \mathbb{R}), so $w_n \rightarrow 3$.

EXERCISE :
$$W_n = \frac{5n-2}{5n+10^6} = \frac{5-\frac{2}{n}}{5+\frac{10^6}{n}}$$

 $W_n = \frac{n^2 + 100n + 1}{n^2 + 10^6} = \frac{1+\frac{100}{n} + \frac{1}{n^2}}{1+10^6/n^2} > 1$

 $Q \bigcirc$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

Theorem (Bolzano–Weierstrass)

Any sequence $(x_n)_{n \in \mathbb{N}}$ contained in the interval [0, 1] has a convergent subsequence x_{n_1}, x_{n_2}, \dots

Proof.

Define $a_0 = 0$ and $b_0 = 1$. At least one of the intervals [0, 1/2] and [1/2, 1] must contain infinitely many members of the sequence, $[a_1, b_1]$ say. Note that $b_1 - a_1 = 1/2$.

Similarly, at least one of the intervals $[a_1, a_1 + 1/4]$, $[a_1 + 1/4, b_1]$ must contain infinitely many members of the sequence, $[a_2, b_2]$ say, where $b_2 - a_2 = 2^{-2}$.

Repeating this construction, we obtain an increasing sequence (a_k) and a decreasing sequence (b_k) in [0,1] for which $b_k - a_k = 2^{-k}$ and $[a_k, b_k]$ contains infinitely many members of (x_n) ; pick any member x_{n_k} of the sequence in $[a_k, b_k]$.

Brad Baxter Birkbeck College, University of London Real A

X.

Xu, or

<ロ > < 同 > < 三 > < 三 > < □ > <

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Theorem (Bolzano–Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof.

If the sequence (x_n) is bounded, then it's contained in a bounded interval, [a, b] say. If we define

$$y=rac{x-a}{b-a}, \qquad x\in\mathbb{R},$$

then this linear function maps the interval [a, b] onto [0, 1] and it's a bijection with inverse

$$x=a+(b-a)y.$$

Now apply the previous version of Bolzano–Weierstrass to $y_n = (x_n - a)/(b - a)$ to obtain a convergent subsequence (y_{n_k}) , and hence (x_{n_k}) .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example

Let a > 1. We shall prove that $a^{1/n} \to 1$, as $n \to \infty$. We know that $a^{1/n} > 1$, for all n (Why?). Hence we can write

$$a^{1/n}=1+d_n, \qquad n\geq 1,$$

and $d_n > 0$. The binomial theorem implies that

$$\begin{array}{l} a = (1 + d_n)^n \\
= 1 + nd_n + \frac{n(n-1)}{2!} d_n^2 + \dots + d_n^n \\
> nd_n,
\end{array}$$

since every term in the binomial expansion is positive. Thus

$$d_n < \frac{a}{n}, \qquad n \ge 1,$$

SQ (A

and therefore $d_n \to 0$, as $n \to \infty$, which implies $a^{1/n} \to 1$.

Example

We shall now show that $n^{1/n} \to 1$, as $n \to \infty$, using a slight modification of the proof technique of the previous example. We again write $n^{1/n} = 1 + d_n$, and observe that $d_n > 0$. Hence the binomial theorem implies that

$$n = (1 + d_n)^n$$

= $1 + nd_n + \frac{n(n-1)}{2!}d_n^2 + \dots + d_n^n$
> $\frac{n(n-1)}{2!}d_n^2$,

since every term in the expansion is positive, whence

$$d_n^2 < \frac{2}{n-1},$$

for $n \ge 2$. In particular, we have shown that $d_n \to 0$, which implies that $n^{1/n} \to 1$, as $n \to \infty$.

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

We will study the exponential function later in this course, but we shall borrow one result from a future lecture here: if x > 0 and

$$S_m(x) = 1 + x + (\frac{x^2}{2!}) + \frac{x^3}{3!} + \dots + \frac{x^m}{m!}, \qquad \checkmark$$

then $S_m(x)$ is a bounded increasing sequence and its limit is the exponential function exp(x).

Theorem (Exponential decay beats linear growth)

We have
$$\lim_{n\to\infty} \frac{n}{\exp(cn)} = 0$$
, for any $c > 0$.

Proof.

If x > 0, then

 $\exp(x) > S_{2}(x) > \frac{x^{2}}{2} \qquad \frac{\exp(x) > x^{2}}{2} \\ \frac{1}{\exp(cn)} < \frac{n}{c^{2}n^{2}/2} = \frac{2}{c^{2}n}, \qquad x = cn$

so that

and the upper bound tends to zero as $n \to \infty$.

Brad Baxter Birkbeck College, University of London

> ×3 Fr X70 x_{7}^{0} $x_{$ < $(cn)^{3/3}!$ = (z^{3}) exp(cn) **Exercise**: Show that, for c > 0, we have $\frac{n}{\exp(cn)} < \frac{n}{c^3 n^3/6} = \frac{6c^{-3}}{n^2}.$ **Exercise:** Show that

<ロト < 同ト < 三ト < 三ト

E.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Is this a contradiction?

<ロト < 同ト < ヨト < ヨト -

Ŧ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Theorem

Let A > 0 and choose $x_1 > \sqrt{A}$. Then the sequence defined by

$$x_{n+1}=rac{1}{2}\left(x_n+rac{A}{x_n}
ight),\quad n\in\mathbb{N},$$

is decreasing and $\lim x_n = \sqrt{A}$.

Let's try it: if A = 3 and $x_1 = 2$, then we obtain:

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

and x_5 is correct to the number of digits displayed.

We can make life easier by defining $x_n = \sqrt{A}y_n$. Exercise: $y_{n+1} = \frac{1}{2}\left(y_n + \frac{1}{y_n}\right)$.

Theorem

Choose $y_1 > 1$. Then the sequence defined by

$$y_{n+1} = \frac{1}{2} \left(\underbrace{y_{k}}_{n} + \frac{1}{y_{n}} \right), \quad n \in \mathbb{N},$$

is decreasing and $\lim y_n = 1$. Further, if $e_n = y_n - 1 < 1$, then

$$e_{n+1} = \frac{\frac{1}{2}e_n^2}{1+e_n},$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

i.e. the error ultimately decreases quadratically: the number of correct digits ultimately doubles on each step.

Exercise: If e_1 is large, then $e_2 \approx e_1/2$.

We're going to need a simple inequality.

Theorem

Let
$$a, b \in \mathbb{R}$$
. Then $\frac{a^2 + b^2}{2} \ge ab$, with equality if and only if $a = b$.

Proof.

We have

$$0 \leq (a-b)^2 = a^2 + b^2 - 2ab$$
,

<ロト < 団 > < 団 > < 豆 > < 豆 > 三 三

5900

with equality if and only if a = b.

Theorem (AM-GM Inequality)

If $x \ge 0$ and $y \ge 0$, then

$$\frac{x+y}{2} \ge \sqrt{xy},$$

E

▲□▶ ▲□▶ ▲□▶ ▲□▶

with equality if and only if x = y.

Proof.

Let $x = a^2$ and $y = b^2$ in the previous theorem.

Now we can prove that the sequence
$$y_1 > 1$$
 and
 $y_{n+1} = (y_n + y_n^{-1})/2$, for $n \in \mathbb{N}$, is decreasing with limit 1.
Proof.
Now $y_1 > 1$ implies $1/y_1 < 1$, so that
 $y_2 = \frac{1}{2} \left(y_1 + \frac{1}{y_1} \right) < \frac{1}{2} (y_1 + 1) < \frac{1}{2} (y_1 + y_1) = y_1$.
Further, by the AM-GM inequality.
 $y_2 = \frac{1}{2} \left(y_1 + \frac{1}{y_1} \right) > \sqrt{y_1 + \frac{1}{y_1}} = 1$.
We now repeat the argument to show that $1 < y_3 < y_2$, etc.
 $1 < \cdots < y_5 < y_1 < y_1$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

We need to borrow a result from next week's lecture:

Theorem (Sum of Geometric Series)

If |a| < 1, then the sequence defined by

$$S_n = 1 - a + a^2 - a^3 + \dots + (-1)^n a^n$$

converges to 1/(1 + a).

Theorem

Let $e_n = y_n - 1$. Then (e_n) is a positive decreasing sequence with limit zero. Further, if $e_n < 1$, then

$$e_{n+1}=\frac{\frac{1}{2}e_n^2}{1+e_n}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

Proof.

Substituting $y_n = 1 + e_n$ in the iteration $y_{n+1} = (y_n + y_n^{-1})/2$, we use the geometric series when $e_n < 1$ to obtain

$$\begin{split} 1 + e_{n+1} &= \frac{1}{2} \left(1 + e_n + \frac{1}{1 + e_n} \right) \\ &= \frac{1}{2} \left(1 + e_n + 1 - e_n + e_n^2 - e_n^3 + e_n^4 - \cdots \right) \\ &= 1 + \frac{1}{2} \left(e_n^2 - e_n^3 + e_n^4 - \cdots \right) \\ &= 1 + \frac{1}{2} e_n^2 \left(1 - e_n + e_n^2 - \cdots \right) \\ &= 1 + \frac{\frac{1}{2} e_n^2}{1 + e_n}. \end{split}$$

Real Analysis 2: Sequences

▲ 伺 ▶ ▲ 트 ▶ ▲ 트 ▶ →

王

 $\mathcal{A} \subset \mathcal{A}$

There is a clever way to characterize convergent sequences.

Definition

A real sequence (x_n) is a **Cauchy sequence** if, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$|x_m - x_n| < \epsilon$$

when $m, n \geq N$.

Theorem

A Cauchy sequence is bounded.

Proof.

There exists N such that, for $m \ge N$, we have

$$|x_m-x_N|<1,$$

i.e.

$$x_N - 1 \le x_m \le x_N + 1$$
, for all

Brad Baxter Birkbeck College, University of London

Real Analysis 2: Sequences

m > N.

Theorem

A convergent sequence is a Cauchy sequence.

Proof.

If $x_n \to a$, then, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$|x_n-a|<\frac{\epsilon}{2}$$

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

for $n \ge N$. Hence, by the Triangle inequality,

$$|x_m - x_n| \le |x_m - a| + |a - x_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

for $m, n \ge N.$

Theorem

A Cauchy sequence is a convergent sequence.

Proof.

We already know that a Cauchy sequence (x_n) is bounded so, by the Bolzano–Weierstrass theorem, there exists a convergent subsequence (x_{n_k}) , with limit *a* say. We can therefore choose $N \in \mathbb{N}$ such that

 $|x_{n_k}-a|<\epsilon/2,$

for $n_k \ge N$ and (because (x_n) is a Cauchy sequence)

$$|x_{n_k}-x_n|<\epsilon/2,$$

for $n \ge N$. Hence $|x_n - a| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Brad Baxter Birkbeck College, University of London

Real Analysis 2: Sequences

LARA ALCOCK: "How to Think about Analysis" C.U.P. E16

The construction of \mathbb{R} via Cauchy sequences in \mathbb{Q} If $Q = (q_n)$ and $R = (r_n)$ are any two Cauchy sequences in \mathbb{Q} for which $q_n - r_n \to 0$, as $n \to \infty$, then we write $Q \sim R$. It's not difficult to show that \sim defines an equivalence relation on the set of all Cauchy sequences in \mathbb{Q} . The real numbers are exactly the equivalence classes.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

3

 $\checkmark Q (\sim$