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Exercise: Prove that there is exactly one least upper bound, i.e.
it's unique.

Similarly, we say A is bounded below if there exists ¢ € R for
which ¢ < aforall a€ A. If L € R is the greatest lower bound for

A, then we write L = inf A or L = glb A.

Exercise: Let A ~ \— L

A={0,1/2,2/3,3/4,4/5,...}. N\ A

Show that inf A =0 and supA = 1. R A\ (
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In the language we shall explore later in this course, R is Q
extended by including all convergent sequences of rationals. We
can avoid sequences for the moment in a very neat way:

The Completeness Axiom: Every non-empty subset of R that is
bounded above has exactly one least upper bound in R.
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If A= {x € R:x? <2}, then a = sup A € R satisfies a* = 2.

Suppose a° < 2. Now

1\ 2 2 1 2a+1
<a+_) B Tt ate

n n n2 n

We know that there exists ng € N such that

2a+1
2 — 32’

no >

for otherwise N would be bounded. Hence

But then a + nlo < a which is nonsense.
Exercise Show that a2 > 2 also leads to a contradiction.
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Theorem (Approximation Property)

Let S be a nonempty subset of R and let U = sup S. Then, for
every a < U, there exists x € S for which a < x < U.

Proof.

If we had x < a for every x € S, then a would be a smaller upper
bound than U = sup S, contradicting the definition of sup S.
Therefore x > a for at least one x € S. []

Theorem

N /s unbounded above.

Proof.

If N were bounded above, then U = supN € R, by the

Completeness Axiom. By the Approximation Property, there would
exist some n € N for which U —-1 < n. Butthen n+1> U, i.e. U
Is not an upper bound, which is a contradiction. []
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Let x € R. Then there exists n € N such that n > x.

If this were not true, then N would be bounded above.

Theorem (The Archimedean Property (or Axiom) of R)

If x >0 and y € R, then there is a positive integer n for which
nx >y.

There is a positive integer n exceeding y/x.

There are no infinitesimals in R: if a € R is nonzero, then there
exists N € N for which 1/n < a for all n > N.
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It's time to return to some actual numbers. A real number of the

form
nA X di n 2) n dn
r — a - - . o e
° 10 " 102 107
where ag is a non-negative integer and ai, ..., a, are integers

satisfying 0 < ax < 9 is usually written as
r = ag.ai1d2 - - dpn.

This is called a finite decimal representation of r.

D. O o

= . |
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Theorem (Arbitrarily accurate decimal approximations exist.)

Let x € Ry. Then for every integer n > 1 there exists a finite
decimal r, = ag.ai1as - - - a, such that

1
107

rh < X < rp,+
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This is really our first algorithm, i.e. essentially a computer
program: we call this a constructive proof.

Let
S={neN:0<n<x}.

Then ag = sup S is a non-negative integer and we write ag = [x],
the greatest integer < x. Thus

ap < x < ag + 1.

Now let a3 = [10x — 10ag], i.e. the greatest integer < 10x — 10ap.
We have 0 < 10x — 10ag = 10(x — ag) < 10, so 0 < a3 < 9 and

1
a; <10x—10ap < a4+ 1, or ao+f—(1)gx<ao—|—all—g.

The algorithm then continues with a, = [10%x — 10%ap — 10ay].

[]
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The previous result tells us two important facts:

©@ We can find infinitely many rational numbers between any two
real numbers.

© We can approximate any real number as closely as we wish.
We say that Q is dense in R.
B R
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Between any two real numbers there is an irrational number.

To see this, let the interval be (a, b). The trick is to consider the
interval (a 4+ v/2, b+ v/2). We know that this interval contains a

rational number, g say, i.e. A X <L o & bt
o < 9
a+V2<qg<b+V2 | 1o B
L
Hence xL g — X 4
X
a<q—V2<b.

Exercise: Prove that g — v/2 is irrational if g € Q.

Exercise: Prove that there are infinitely many irrational numbers in
(a, b).
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We say that a sequence of real numbers a1, as, ... is an increasing
sequence /f

le. ax < ayyq for all k € N.

Here are 3 increasing sequences:

© The constant sequence a, = 1, for all kK € N, is an increasing
sequence, albeit a rather boring example (think of increasing
as really meaning non-decreasing, if it helps).

Q akzl—%,forkEN.
Q@ a, = 10X, for k =0,1,2,... (i.e. the index can start at 0).
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Definition (e, N definition of continuity)

A real sequence (a,) is convergent with limit a € R if, for any

positive € > 0, there exists an integer N = N, for which
—e < On— o L&

for all n > N. We write llm,_o a, = a or a, — a, as n — o0.

If a sequence isn't convergent, then we say it's divergent.

ax = 10K and by = (—1)¥ are divergent sequences.
N _ . a6

A & - .\

o

—

\
W

A -

\ - a—&
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If a, =1 for all n € N, then a, — 1, as n — 0o. The key point is
that a, — 1 = 0, for all n, so that, given any ¢ > 0, we have
la, — 1] <ﬂéfor all n.

If a,=1—1/n, for n € N, then a, — 1, as n — oo. Indeed, given

any € > 0, we have

1
n

for all integer n such that n > 1/¢, i.e. for all sufficiently large
integer n, by the Archimedean Property of R.
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A real increasing sequence (an) that is bounded above is
convergent and lim,_.. a, = sup a,.

Choose any € > 0. If a = sup a,, then there must be at least one
member of the sequence (a,), ay say, in the interval (a — ¢, a), for
otherwise a would not be the least upper bound. Since (a,) is an
increasing sequence, we have

a—e<ay<anti1 < ang2<---<a.

Thus lim,_s an = a. []
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Let b, = 1+ n—1. We shall prove that b, — 1 as n — co. Thus,
given any € > 0,
by — 1| =|n"1] < e

when n ZﬁN and N > ¢ 1.

Exercise: Are these sequences convergent or divergent? Find their
limits if convergent.

™ @ a,=(-1)" forneN.
. © anz(_n—lg)n,forneN_
| m D
. © anzs'n(3n00n),forn€N. o O0O0 cosolo ;
e |00
S

1 if n=10" for some m& N
an =
0 otherwise.
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o

The absolute value |x| of x € R is defined by

X if x >0,
—x Ifx <0.

If a > 0, then |x| < a if and only if —a < x < a.

x| =
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Theorem (The Triangle Inequality)
If a,b € R, then |a+ b| < |a| + |b|.

We have

—la| <a<l]al and —|b] < b < |b|,
and adding these inequalities gives

—(lal +[b]) < a+ b < (|a] + [b])

which implies

a+b| < |a] + [b].
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Theorem (Alternative form of Triangle Inequality)

If a,b € R, then

L
a4 b| > [[a] —|b]]. _fciijgf7

73

If we let x =a — b and y = b, then x + y = a and the triangle

inequality

x+y| < |x|+

E

y| becomes |a| < |a— b| + |b]| or

P ——
T g

—|b| < |a—b].

Further, if we let x =b — a and y = a, then x + y = b and the
triangle inequality becomes |b| < |b — a| + |a|, or

6] — |a| = = (Ja] = |b]) < |a = b].
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A convergent sequence Is bounded.

If a1, ap,... Is a convergent sequence with limit a, then there exists

N € N for which
la, — a| < 1,

for all n > N. In particular,

Y

a—1<a,<a+1,

for all n > N. Thus the sequence is bounded. [ ]

\}v\ "‘S‘ MM ="> A\Q\"""QWBD
NOT Vouwnadide —> O Aﬁw'\h&@&vﬁ:
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Theorem (Sequence Addition)

Suppose a, — a and b, — b, as n — oo. Then a, + b, — a+ b.

Given any € > 0, choose a positive integer N so large that both

la, — a| < ¢/2 and |bp, — b| < €/2.
Then
[(an + bn) — (a+ b)| = |(an — a) — (bn — b)|
S’an—3"|‘|bn_b‘
_ € N €
2 "9 ©
[]
E)@—C‘g! LR —m> CA fff A — A
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Theorem (Sequence Multiplication)

Suppose a, — a and b, — b, as n — oo. Then a,b, — ab.

Letun—an—aand Vo, = b, — b. Then u, — 0 and v, — 0, and
a, =a-+ u,, b, = b+ v,. Further

anb, —ab=(a+ u,)(b+ v,) —ab=av, + bu, + unv,,.

F~

Now, given any o € (0, 1), there exists N € N for which |up| < «
Vo] < a® < a, for all

—

n > N,, since a € (0, 1) Hence

(a+ up)(b+ v,) — ab|
avn, + bu, + upvy|
< |avp| + [bun| + |unva| < (|a] + [b] + 1) &

|a,b, — ab|

Hence, given any € > 0, choose a < and n > N,,.

€
|a|+|b|+1
L]
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Suppose a, — a, b, — b and b # 0. We shall soon prove that
an/b, — a/b, but we shall need a simple example first.

Let b, — b and initially suppose that b > 0. Then b, > 0 for all
sufficiently large n, i.e. a real sequence with positive limit is
ultimately positive.

The key point is the definition of convergence: given any ¢ > 0,
there exists N € N such that n > N implies |b, — b| < €. In

particular, if we choose € = b/2, then L L
= =
‘bn T b‘ < b/27
l.e. | o v

—b/2 < b, — b < b/2,

which implies
b/2 < b, < 3b/2,

when n > N.
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When the limit b is negative, we have b = —|b| and setting ¢ =
|b|/2 implies
—|b|/2 < b, — b < |b|/2,

for (say) n > N. But we can rewrite this as
—|b[/2 < by +[b] < [b]/2,

whence

—3|b|/2 < b, < —|b|/2,
and b, < —|b|/2 implies that |b,| > |b|/2.
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Theorem (Sequence Division)

Let a, — a, b, — b and suppose that b = 0. Then

an a
im — = —.

n—oco by, b

There exists M € N such that |b,| > |b|/2 for n > M. Hence

1 1‘_\b—bn\

b, b|  |bby]

] > |b|/2 implies |bbn| < ﬁ, so that

1 1| |b—b, |

— — = = —— | |b— b,

by b| . < (o) ot

and this can be made arbitrarily small for all sufficiently large n.

Thus the sequence ¢, = b, ! is well defined for n > M and
c, — b1 Finally, a,c, — ab— 1. []

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences




Let’'s use our new knowledge of sequence arithmetic. Recall that

wp, = (3n + n+ 4)| for n > 1. Then, dividing numerator and
enominator by n, we obtain

34+nt a
Wy, = = —.
" 14+4n1 " b,
Now a, — 3 and b, — 1 # 0 (by the Archimedean Property of R),
so w, — 3.
EXYKERCiGE ¢ W, — R - "? z
5n 410 c o O
- At 100w 4 _ \4—‘—2‘3—4-;\\1 ~>.\
A - - - 3 -
mz-"___ \Dé 14 'O /n

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences



— J
— |
v 9 A
Y (i )
o Vg / _.
| 7ﬁ/
\U | \ “ \
N\ i
\ | <
] AV, AN\ J.
| Q . al
, l “
T ¢ o \)
ﬁ b . — K—
v al \ ]
v T Y S,
<A/ /C : . \
' s oy ¥
\ \ ( ’.
| N _r /
W\
' /./ 7\ ~N N
—) R )
.P\H ) Il.\t ll\Vu O
W) c “ ) <
CJ IJQ 0\ l/ N
@ b Z < m& Q
) = N\ \
NS ﬂlb —_—




Theorem (Bolzano—\Weierstrass)

Any sequence (xp)neN contained in the interval [0,1] has a
convergent subSEQUENCE Xpy, Xnyy - - o 1 Sor ¥ B ¥ Te

Define ag = 0 and by = 1. At least one of the intervals [0,1/2]
and [1/2,1] must contain infinitely many members of the
sequence, (a1, b1] say. Note that by — a; = 1/2.

Similarly, at least one of the intervals [a1,a1 + 1/4], [a1 + 1/4, b1]
must contain infinitely many members of the sequence, [az, bo] say,
where by — ap = a

——

Repeating this construction, we obtain an increasing sequence (ay)
and a decreasing sequence (by) in [0, 1] for which by — ag = 2%
and [ak, bi| contains infinitely many members of (x,); pick any
member x,, of the sequence in [ak, by]. Nz N

%o K ~ —c L]

\ )

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences



sV

\

—
ANl

A

o

s’

el

—W\S <~

A
~ -~ 0

L
M v, ~-="

\

!\\J
A~

M\,
bl

2,
'(I A A\,

) &

4
N
C_/ T

£

< u\\l C
L
N v‘\
\
«

¥

? g\ L

S v\b“

2

&

\\.e
LS) NN

/"




Theorem (Bolzano—\Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof.

If the sequence (x,) is bounded, then it's contained in a bounded
interval, [a, b] say. If we define

X — 4

x € R,

then this linear function maps the interval [a, b] onto [0, 1] and it’s
a bijection with inverse

x=a+(b—a)y.

(4

Now apply the previous version of Bolzano—Weierstrass to

Yn = (xn, — a)/(b — a) to obtain a convergent subsequence (y,, ),
and hence (xp, ). L]
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Let a > 1. We shall prove that al/" — 1, as n — oo. We know

that at/” > 1, for all n (Why?). Hence we can write
L/

at/" =1+d,. n>1,

-

and d, > 0. The binomial theorem implies that

a=(1+d,)"

—1
:1++ n(nzl )d,2,+---+d,',’

> nd,,

—

since every term in the binomial expansion is positive. Thus

1/n

and therefore d, — 0, as n — oo, which implies a*/" — 1.

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences



Example

We shall now show tha An17” — 1} as n — oo, using a slight
modification of the proof technique of the previous example. We
again write nt/" =1+ d., and observe that d, > 0. Hence the
binomial theorem implies that

n=(1+d,)"

=1+ nd, + 4 -4+ d;

n(n—1) ,
> T d;,

since every term in the expansion is positive, whence

d? <

~

for n > 2. In particular, we have shown that d, — 0, which implies
that n'/" = 1, as n — oo.
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We will study the exponential function later in this course, but we
shall borrow one result from a future lecture here: if x > 0 and

/ 3 m
Sm(X)=1+x++%+--- . "fo

then S,,(x) is a bounded increasing sequence and its limit is the
exponential function exp(x).

Theorem (Exponential decay beats linear growth)

We have lim,_s W’ch) =0, for any c > 0.

If x > 0, then , ecp (1) 7 KT
exp(x) > Sa(x) > X? | ZZ
so that erp Gy vy
n n 2
exp(cn) = 2n2j2  c2n’ K= Sw
and the upper bound tends to zero as n — 0. []
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Fb‘( K7° . 7(7 xm <
m§(7§‘) 2 | A2 K A :j‘—\-—'/{,\—rff f\"‘_;?. 7 ’5"\
"\ "\
— < ———3’/' \
Exercise: Show that, for ¢ > 0, we have “@¢yplcn) e /3.
r—-$
n - n B 6¢c3 - b=
exp(cn) ~ c3n3/6  n?2 n”"
Exercise: Show that
n? 6¢c—3
<
exp(cn) n
_5
2 ,‘/\L <
N — I
< _ — "\
explen) (En) /€
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Exercise: Show that 7
100 101!
< -
exp(n) n
Hence n'%/exp(n) — 0 as n — co. However, n= O
10100

~ 4.54 x 10%°.

exp(109)

Is this a contradiction?
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Let A > 0 and choose x; > v/A. Then the sequence defined by

1 A
Xn+1:—<Xn—|——>, ne N,

2 Xn

—

is decreasing and lim x, = V/A.

Let's try it: if A= 3 and x; = 2, then we obtain:

xp = 1.750000000000000
x3 = 1.732142857142857
bttt

xg = 1.732050810014727
x5 = 1.732050807568877,

—

and x5 is correct to the number of digits displayed.
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We can make life easier by defining x, = VAy,,.

Exercise: yp11 = % (y,, + y_l,,)

Choose y1 > 1. Then the sequence defined by

! —I-l c N
n — A ] n 9
Vo 2 %L Yn B

—

Is decreasing and limy, = 1. Further, if e, =y, — 1 < 1, then

e,%r’
1+e,’

N

€n+1 —

I.e. the error ultimately decreases quadratically: the number of
correct digits ultimately doubles on each step.

Exercise: If e; is large, then e = e;/2.
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We're going to need a simple inequality.

Let a,b € R. Then
2 b2
T >
with equality if and only if a = b.

We have

0 < (a— b)* = a®+ b> —2ab,
with equality if and only if a = b. []
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Theorem (AM-GM Inequality)

If x>0 and y > 0, then

X+Yy

> > /XY,

with equality if and only if x = y.

Let x = a® and y = b? in the previous theorem. []
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Now we can prove that the sequence y; > 1 and
Vi1 = (Vo + v 1)/2, for n € N, is decreasing with limit 1.

AN

Proof.
Now y; > 1 implies 1/y; < 1, so that
R _ .
e ) <t <toiin =
)/2—2 Y1 I 2)/1 } 2)/1 yl,_.)i

Further, by the AM-GM inequality, [ < v, < 9

1 1 1
)/225 yvi+— | >4/yi-— =1
Y1 Y1

We now repeat the argument to show that 1 < y3 < y», etc. []

1 < ~Aor 4 y} < y" < j/
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We need to borrow a result from next week's lecture:

Theorem (Sum of Geometric Series)

If |a| < 1, then the sequence defined by
.

Sp=1—a+a"—a+ -+ (=-1)"a"

converges to 1/(1 + a).

Let e, =y, — 1. Then (e,) is a positive decreasing sequence with
limit zero. Further, if e, < 1, then

&
1+e,

N

€n+1 —

-
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Substituting y, = 1 + e, in the iteration y, 1 = (y, + v, 1)/2, we
use the geometric series when e, < 1 to obtain

=5 /+@/+e—e+e— )
@2@ —eptep—--)

(l—en—l—e— )
2
n

1
1+en+1 2 <1+en

1
2

N =
D

1+e,,'
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There is a clever way to characterize convergent sequences.

Definition

A real sequence (x,) is a Cauchy sequence if, given any € > 0,
there exists N = N. € N for which

when m,n > N.

Theorem

A Cauchy sequence is bounded.

Proof.

There exists N such that, for m > N, we have

‘Xm — X/\/‘ < 1,

—

l.e.
xny— 1< xpm <xy+1, for all m > N.

—
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Theorem

A convergent sequence is a Cauchy sequence.

Proof.

If x, — a, then, given any € > 0, there exists N = N, € N for
which

€
]xn—a|<§

for n > N. Hence, by the Triangle inequality,

€ €
]Xm—xn|§\Xm—a\—|—\a—xn\<§+§:e,

for [ ]
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A Cauchy sequence is a convergent sequence.

Proof.

We already know that a Cauchy sequence (x,) is bounded so, by
the Bolzano—Weierstrass theorem, there exists a convergent
subsequence (x,, ), with limit a say. We can therefore choose
N & N such that

| Xn, — a| < €/2,

for n, > N and (because'?xn) is a Cauchy sequence)

—

| Xn, — Xn| < €/2,

P

for n > N. Hence

Ix, — a| < <
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The construction of R via Cauchy sequences in QQ

If @ =(qgn) and R = (r,) are any two Cauchy sequences in Q for
which g, — r, — 0, as n — oo, then we write @ ~ R. It's not
difficult to show that ~ defines an equivalence relation on the set
of all Cauchy sequences in Q. The real numbers are exactly the
equivalence classes.
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