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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), “How to Think about
Analysis”, Oxford University Press.
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Cauchy sequences are important for series too, so I shall begin with
an example.

Example (Using the Cauchy condition)

Given any x0, x1 ∈ R, we define the sequence

xk =
1

2
(xk−1 + xk−2) , for k ≥ 2.

Then

xk − xk−1 =
1

2
(xk−1 + xk−2)− xk−1 = −1

2
(xk−1 − xk−2) ,

or

|xk − xk−1| =
1

2
|xk−1 − xk−2| .
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Then

|xN+p − xN | ≤ |xN+p − xN+p−1|+ · · ·+ |xN+1 − xN |

≤
(

1

2p
+

1

2p−1
+ · · ·+ 1

2

)
|xN − xN−1|

≤
(

1

2p
+

1

2p−1
+ · · ·+ 1

2

)
1

2N−1
|x1 − x0|

≤ 1

2N−1
|x1 − x0| .

Now, given any ε > 0, we can choose N ∈ N such that

1

2N−1
|x1 − x0| < ε

Hence (xk) is a Cauchy sequence, and therefore convergent. [It
can be shown that the solution is xn = A + B(−1/2)n, where
A = (x0 + 2x1)/3 and B = x0 − A.]

Brad Baxter Birkbeck College, University of London Real Analysis 2.5: From Sequences to Series



Example (Solving xk+1 = (xk + xk−1)/2)

We saw earlier that

xk+1 − xk = C (xk − xk−1) ,

where C = −1/2. Hence

xk − xk−1 = C (xk−1 − xk−2)

= C 2 (xk−2 − xk−3)

= · · ·
= C k−1 (x1 − x0) .
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Exercise: Use
xk − xk−1 = C k−1 (x1 − x0)

to show that (later you will see this is a telescoping sum)

n∑
k=1

(xk − xk−1) = xn − x0

and (we will see geometric series later this lecture), recalling that
C = −1/2,

n∑
k=1

C k−1 =
2

3
(1− (−1/2)n) .

Hence show that xn = A + B(−1/2)n, where A = (x0 + 2x1)/3 and
B = x0 − A.
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Theorem (Sums of Powers)

You should know that

n∑
k=0

k =
1

2
n(n + 1)

and
n∑

k=0

k2 =
1

6
n(n + 1)(2n + 1)

and I cannot resist stating the beautiful fact that

n∑
k=0

k3 =

(
n∑

k=1

k

)2

.
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You have probably all seen
∑n

0 k and
∑n

0 k
2, but where do they

come from? The answer lies in a fascinating borderland between
series and the origins of calculus.

Definition

The forward difference operator ∆ is defined by

∆an = an+1 − an.

Example

1 If an = c , for all n, then ∆an = 0.

2 If an = n, then ∆an = n + 1− n = 1.

3 ∆n2 = (n + 1)2 − n2 = 2n + 1

4 ∆n3 = (n + 1)3 − n3 = 3n2 + 3n + 1.
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Example (
∑n

k=0 k)

If Sn = 0 + 1 + 2 + · · ·+ n, then ∆Sn = Sn+1 − Sn = n + 1. Then

∆
(
Sn − An2 − Bn

)
= 0,

if
n + 1− A(2n + 1)− B = 0, for all n,

or A = B = 1/2. Now ∆(Sn − An2 − Bn) = 0 implies that
Sn − An2 − Bn = c, for some constant c , but setting n = 0 implies
c = 0.
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Theorem (
∑n

k=0 k
2)

Let Tn = 02 + 12 + 22 + · · ·+ n2. Then

Tn =
1

3
n3 +

1

2
n2 +

1

6
n.

Proof.

Now
∆Tn = Tn+1 − Tn = (n + 1)2 = n2 + 2n + 1.

We must therefore find constants P, Q and R for which

∆
(
Pn3 + Qn2 + Rn

)
= 2n2 + 2n + 1,

i.e. equating coefficients of powers of n, we have

P(3n2 + 3n + 1) + Q(2n + 1) + R = n2 + 2n + 1.

Hence 3P = 1, 3P + 2Q = 2 and P + Q + R = 1.
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Example (
∑n

k=0 k
3)

Let Un =
∑n

k=0 k
3. Then

∆Un = (n + 1)3 = n3 + 3n + 3n + 1

and we need constants A1,A2,A3,A4 ∈ R for which

∆
(
A4n

4 + A3n
3 + A2n

2 + A1n
)

= n3 + 3n2 + 3n + 1.

Now

LHS = A4(4n3 +6n2 +4n+1)+A3(3n2 +3n+1)+A2(2n+1)+A1

so that, equating coefficients of powers of n,

4A4 = 1,

6A4 + 3A3 = 3,

4A4 + 3A3 + 2A2 = 3,

A4 + A3 + A2 + A1 = 1.
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Exercise: Hence show that

Un =
1

4
n4 +

1

2
n3 +

1

4
n2 = S2

n ,

where Sn =
∑n

k=0 k.
Note: Sadly the beautiful fact that Un = S2

n does not extend to
higher sums of powers.
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