Real Analysis 2: Sequences

Brad Baxter Birkbeck College, University of London

July 7, 2023

つくへ

э

∍

Brad Baxter Birkbeck College, University of London [Real Analysis 2: Sequences](#page-34-0)

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

 Ω

Definition

We say that a sequence of real numbers a_1, a_2, \ldots is an increasing sequence if

 $a_1 < a_2 < a_3 < \cdots$

i.e. $a_k < a_{k+1}$ for all $k \in \mathbb{N}$.

Example

Here are 3 increasing sequences:

1 The constant sequence $a_k = 1$, for all $k \in \mathbb{N}$, is an increasing sequence, albeit a rather boring example (think of increasing as really meaning non-decreasing, if it helps).

$$
a_k = 1 - \frac{1}{k}, \text{ for } k \in \mathbb{N}.
$$

3
$$
a_k = 10^k
$$
, for $k = 0, 1, 2, ...$ (i.e. the index can start at 0).

∢ 何 ゝ ∢ ヨ ゝ ィ ヨ ゝ 。

 200

Definition (ϵ , N_{ϵ} definition of convergence)

A real sequence (a_n) is **convergent** with limit $a \in \mathbb{R}$ if, for any positive $\epsilon > 0$, there exists an integer $N \equiv N_{\epsilon}$ for which

$$
|a_n-a|<\epsilon
$$

つくい

for all $n > N$. We write $\lim_{n\to\infty} a_n = a$ or $a_n \to a$, as $n \to \infty$.

If a sequence isn't convergent, then we say it's divergent.

Example

 $a_k = 10^k$ and $b_k = (-1)^k$ are divergent sequences.

Example

If $a_n = 1$ for all $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. The key point is that $a_n - 1 = 0$, for all n, so that, given any $\epsilon > 0$, we have $|a_n - 1| < \epsilon$ for all *n*.

Example

If $a_n = 1 - 1/n$, for $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. Indeed, given any $\epsilon > 0$, we have

$$
|a_n-1|=\frac{1}{n}<\epsilon
$$

つくい

for all integer *n* such that $n > 1/\epsilon$, i.e. for all sufficiently large integer *n*, by the Archimedean Property of \mathbb{R} .

Theorem

A real increasing sequence (a_n) that is bounded above is convergent and $\lim_{n\to\infty} a_n = \sup a_n$.

Proof.

Choose any $\epsilon > 0$. If $a = \sup a_n$, then there must be at least one member of the sequence (a_n) , a_N say, in the interval $(a - \epsilon, a)$, for otherwise a would not be the least upper bound. Since (a_n) is an increasing sequence, we have

$$
a-\epsilon < a_N \leq a_{N+1} \leq a_{N+2} \leq \cdots \leq a.
$$

つくい

Thus $\lim_{n\to\infty} a_n = a$.

Example

Let $b_n = 1 + n^{-1}$. We shall prove that $b_n \to 1$ as $n \to \infty$. Thus, given any $\epsilon > 0$,

$$
|b_n-1|=|n^{-1}|<\epsilon
$$

when $n \geq N$ and $N > \epsilon^{-1}$.

Exercise: Are these sequences convergent or divergent? Find their limits if convergent.

 200

\n- **1**
$$
a_n = (-1)^n
$$
, for $n \in \mathbb{N}$.
\n- **2** $a_n = \frac{(-1)^n}{n^2}$, for $n \in \mathbb{N}$.
\n- **3** $a_n = \frac{\sin(300n)}{n}$, for $n \in \mathbb{N}$.
\n- **4** $a_n = \begin{cases} 1 & \text{if } n = 10^m \text{ for some } m \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$
\n

Definition

The absolute value $|x|$ of $x \in \mathbb{R}$ is defined by

$$
|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}
$$

E

押 ▶ イヨ ▶ イヨ ▶ │

す口下

 299

Theorem

If $a \geq 0$, then $|x| \leq a$ if and only if $-a \leq x \leq a$.

Theorem (The Triangle Inequality)

If $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Proof.

We have

$$
-|a| \le a \le |a| \quad \text{ and } \quad -|b| \le b \le |b|,
$$

and adding these inequalities gives

$$
-(|a|+|b|)\leq a+b\leq (|a|+|b|)
$$

which implies

$$
|a+b|\leq |a|+|b|.
$$

4日下

④ → → 三

 200

Theorem (Alternative form of Triangle Inequality)

If $a, b \in \mathbb{R}$, then

$$
|a-b|\geq | |a|-|b| \Big|.
$$

Proof.

If we let $x = a - b$ and $y = b$, then $x + y = a$ and the triangle inequality $|x + y| \le |x| + |y|$ becomes $|a| \le |a - b| + |b|$ or

$$
|a|-|b|\leq |a-b|.
$$

Further, if we let $x = b - a$ and $y = a$, then $x + y = b$ and the triangle inequality becomes $|b| \le |b - a| + |a|$, or

$$
|b| - |a| = -(|a| - |b|) \leq |a - b|.
$$

つくい

Theorem

A convergent sequence is bounded.

Proof.

If a_1, a_2, \ldots is a convergent sequence with limit a, then there exists $N \in \mathbb{N}$ for which

$$
|a_n-a|<1,
$$

for all $n > N$. In particular,

$$
a-1\leq a_n\leq a+1,
$$

 200

for all $n > N$. Thus the sequence is bounded.

Theorem (Sequence Addition)

Suppose $a_n \to a$ and $b_n \to b$, as $n \to \infty$. Then $a_n + b_n \to a + b$.

Proof.

Given any $\epsilon > 0$, choose a positive integer N so large that both

$$
|a_n - a| < \epsilon/2 \qquad \text{and} \qquad |b_n - b| < \epsilon/2.
$$

Then

$$
|(a_n + b_n) - (a + b)| = |(a_n - a) - (b_n - b)|
$$

\n
$$
\le |a_n - a| + |b_n - b|
$$

\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

伊 ▶ (ヨ)

つくい

Theorem (Sequence Multiplication)

Suppose $a_n \to a$ and $b_n \to b$, as $n \to \infty$. Then $a_n b_n \to ab$.

Proof.

Let $u_n = a_n - a$ and $v_n = b_n - b$. Then $u_n \to 0$ and $v_n \to 0$, and $a_n = a + u_n$, $b_n = b + v_n$. Further

$$
a_n b_n - ab = (a + u_n)(b + v_n) - ab = av_n + bu_n + u_n v_n.
$$

Now, given any $\alpha \in (0,1)$, there exists $N \in \mathbb{N}$ for which $|u_n| < \alpha$ and $|v_n| < \alpha$ when $n > N_\alpha$. Further, $|u_n v_n| < \alpha^2 < \alpha$, for all $n \geq N_{\alpha}$, since $\alpha \in (0,1)$. Hence

$$
|a_n b_n - ab| = |(a + u_n)(b + v_n) - ab|
$$

= |av_n + bu_n + u_n v_n|
\le |av_n| + |bu_n| + |u_n v_n| < (|a| + |b| + 1) \alpha.

 000

Hence, given any $\epsilon > 0$, choose $\alpha < \frac{\epsilon}{|a|+|b|+1}$ and $n \geq N_\alpha$.

Suppose $a_n \rightarrow a$, $b_n \rightarrow b$ and $b \neq 0$. We shall soon prove that $a_n/b_n \rightarrow a/b$, but we shall need a simple example first.

Example

Let $b_n \to b$ and initially suppose that $b > 0$. Then $b_n > 0$ for all sufficiently large n , i.e. a real sequence with positive limit is ultimately positive.

The key point is the definition of convergence: given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n > N$ implies $|b_n - b| < \epsilon$. In particular, if we choose $\epsilon = b/2$, then

$$
|b_n-b|
$$

i.e.

$$
-b/2 < b_n - b < b/2,
$$

which implies

$$
b/2
$$

 200

when $n > N$.

Brad Baxter Birkbeck College, University of London [Real Analysis 2: Sequences](#page-0-0)

When the limit b is negative, we have $b = -|b|$ and setting $\epsilon =$ $|b|/2$ implies

$$
-|b|/2 < b_n - b < |b|/2,
$$

for (say) $n \geq N$. But we can rewrite this as

$$
-|b|/2 < b_n + |b| < |b|/2,
$$

whence

$$
-3|b|/2 < b_n < -|b|/2,
$$

何 ▶ イヨ ▶ イヨ ▶ │

 2990

э

and $b_n < -|b|/2$ implies that $|b_n| > |b|/2$.

Theorem (Sequence Division)

Let $a_n \rightarrow a$, $b_n \rightarrow b$ and suppose that $b \neq 0$. Then

$$
\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.
$$

Proof.

There exists $M \in \mathbb{N}$ such that $|b_n| > |b|/2$ for $n \geq M$. Hence

$$
\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b-b_n|}{|bb_n|},
$$

and, for $n\geq M$, $|b_n|>|b|/2$ implies $\frac{1}{|bb_n|}<\frac{2}{|b|}$ $\frac{2}{|b|^2}$, so that

$$
\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b-b_n|}{|bb_n|}<\left(\frac{2}{|b|^2}\right)|b-b_n|
$$

and this can be made arbitrarily small for all sufficiently large n. Thus the sequence $c_n=b_n^{-1}$ is well defined for $n\geq M$ and $c_n \to b^{-1}$. Finally, $a_n c_n \to ab^{-1}$. Brad Baxter Birkbeck College, University of London [Real Analysis 2: Sequences](#page-0-0)

 QQ

Example

Let's use our new knowledge of sequence arithmetic. Recall that $w_n = (3n + 1)/(n + 4)$, for $n \ge 1$. Then, dividing numerator and denominator by n , we obtain

$$
w_n = \frac{3 + n^{-1}}{1 + 4n^{-1}} \equiv \frac{a_n}{b_n}.
$$

Now $a_n \to 3$ and $b_n \to 1 \neq 0$ (by the Archimedean Property of R), so $w_n \rightarrow 3$.

 200

Theorem (Bolzano–Weierstrass)

Any sequence $(x_n)_{n\in\mathbb{N}}$ contained in the interval [0, 1] has a convergent subsequence x_{n_1}, x_{n_2}, \ldots

Proof.

Define $a_0 = 0$ and $b_0 = 1$. At least one of the intervals $[0, 1/2]$ and $[1/2, 1]$ must contain infinitely many members of the sequence, $[a_1, b_1]$ say. Note that $b_1 - a_1 = 1/2$.

Similarly, at least one of the intervals $[a_1, a_1 + 1/4]$, $[a_1 + 1/4, b_1]$ must contain infinitely many members of the sequence, $[a_2, b_2]$ say, where $b_2 - a_2 = 2^{-2}$.

Repeating this construction, we obtain an increasing sequence (a_k) and a decreasing sequence (b_k) in [0, 1] for which $b_k - a_k = 2^{-k}$ and $[a_k, b_k]$ contains infinitely many members of (x_n) ; pick any member x_{n_k} of the sequence in $[a_k, b_k]$.

イロメ イ母メ イヨメ イヨメー

つくい

Theorem (Bolzano–Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof.

If the sequence (x_n) is bounded, then it's contained in a bounded interval, $[a, b]$ say. If we define

$$
y=\frac{x-a}{b-a},\qquad x\in\mathbb{R},
$$

then this linear function maps the interval $[a, b]$ onto $[0, 1]$ and it's a bijection with inverse

$$
x=a+(b-a)y.
$$

Now apply the previous version of Bolzano–Weierstrass to ${\cal Y}_n = ({\sf x}_n - {\sf a})/({\sf b} - {\sf a})$ to obtain a convergent subsequence $({\sf y}_{n_k}),$ and hence (x_{n_k}) .

何 ▶ (三) (三)

つくい

Example

Let $a>1.$ We shall prove that $a^{1/n}\rightarrow 1,$ as $n\rightarrow\infty.$ We know that $a^{1/n} > 1$, for all n (Why?). Hence we can write

$$
a^{1/n}=1+d_n, \qquad n\geq 1,
$$

and $d_n > 0$. The binomial theorem implies that

$$
a = (1 + d_n)^n
$$

= 1 + nd_n +
$$
\frac{n(n-1)}{2!}d_n^2 + \dots + d_n^m
$$

> nd_n,

since every term in the binomial expansion is positive. Thus

$$
d_n < \frac{a}{n}, \qquad n \ge 1,
$$

 $\begin{array}{cccccccccccccc} \bullet & \equiv & \bullet & \bullet & \bullet & \equiv & \bullet & \bullet & \bullet \end{array}$

 QQ

and therefore $d_n\to 0$, as $n\to\infty$, which implies $a^{1/n}\to 1$.

Example

We shall now show that $n^{1/n} \to 1$, as $n \to \infty$, using a slight modification of the proof technique of the previous example. We again write $n^{1/n} = 1 + d_n$, and observe that $d_n > 0$. Hence the binomial theorem implies that

$$
n = (1 + d_n)^n
$$

= 1 + nd_n + $\frac{n(n-1)}{2!}d_n^2 + \dots + d_n^m$
> $\frac{n(n-1)}{2!}d_n^2$,

since every term in the expansion is positive, whence

$$
d_n^2<\frac{2}{n-1},
$$

for $n > 2$. In particular, we have shown that $d_n \to 0$, which implies that $n^{1/n} \to 1$, as $n \to \infty$.

 QQ

We will study the exponential function later in this course, but we shall borrow one result from a future lecture here: if $x > 0$ and

$$
S_m(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^m}{m!},
$$

then $S_m(x)$ is a bounded increasing sequence and its limit is the exponential function $exp(x)$.

Theorem (Exponential decay beats linear growth)

We have
$$
\lim_{n\to\infty} \frac{n}{\exp(cn)} = 0
$$
, for any $c > 0$.

Proof.

If $x > 0$, then

$$
\exp(x) > S_2(x) > \frac{x^2}{2}
$$

so that

$$
\frac{n}{\exp(cn)} < \frac{n}{c^2n^2/2} = \frac{2}{c^2n},
$$

and the upper bound tends to zero as $n \to \infty$.

Exercise: Show that, for $c > 0$, we have

$$
\frac{n}{\exp(cn)} < \frac{n}{c^3 n^3/6} = \frac{6c^{-3}}{n^2}.
$$

Exercise: Show that

$$
\frac{n^2}{\exp(cn)} < \frac{6c^{-3}}{n}.
$$

a mille

4 重

重 . p ∍ 299

Brad Baxter Birkbeck College, University of London [Real Analysis 2: Sequences](#page-0-0)

Is this a contradiction?

 2990

Theorem

Let $A > 0$ and choose $x_1 >$ √ A. Then the sequence defined by

$$
x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right), \quad n \in \mathbb{N},
$$

is decreasing and lim $x_n =$ √ A.

Let's try it: if $A = 3$ and $x_1 = 2$, then we obtain:

 $x_2 = 1.750000000000000$ $x_3 = 1.732142857142857$ $x_4 = 1.732050810014727$ $x_5 = 1.732050807568877$

つくい

and $x₅$ is correct to the number of digits displayed.

We can make life easier by defining $x_n =$ √ Ayn. Exercise: $y_{n+1} = \frac{1}{2}$ $rac{1}{2}\left(y_n + \frac{1}{y_n}\right)$ $\frac{1}{y_n}$.

Theorem

Choose $y_1 > 1$. Then the sequence defined by

$$
y_{n+1} = \frac{1}{2} \left(y_n + \frac{1}{y_n} \right), \quad n \in \mathbb{N},
$$

is decreasing and lim $y_n = 1$. Further, if $e_n = y_n - 1 < 1$, then

$$
e_{n+1} = \frac{\frac{1}{2}e_n^2}{1+e_n},
$$

つくい

i.e. the error ultimately decreases quadratically: the number of correct digits ultimately doubles on each step.

Exercise: If e_1 is large, then $e_2 \approx e_1/2$.

We're going to need a simple inequality.

Theorem

Let $a, b \in \mathbb{R}$. Then

$$
\frac{a^2+b^2}{2}\geq ab,
$$

with equality if and only if $a = b$.

Proof.

We have

$$
0 \le (a - b)^2 = a^2 + b^2 - 2ab,
$$

г

 \rightarrow

 299

with equality if and only if $a = b$.

Theorem (AM-GM Inequality)

If $x > 0$ and $y > 0$, then

$$
\frac{x+y}{2}\geq \sqrt{xy},
$$

 Ω

with equality if and only if $x = y$.

Proof.

Let $x = a^2$ and $y = b^2$ in the previous theorem.

Now we can prove that the sequence $y_1 > 1$ and $y_{n+1} = (y_n + y_n^{-1})/2$, for $n \in \mathbb{N}$, is decreasing with limit 1.

Proof.

Now $y_1 > 1$ implies $1/y_1 < 1$, so that

$$
y_2=\frac{1}{2}\left(y_1+\frac{1}{y_1}\right)<\frac{1}{2}\left(y_1+1\right)<\frac{1}{2}\left(y_1+y_1\right)=y_1.
$$

Further, by the AM-GM inequality,

$$
y_2 = \frac{1}{2}\left(y_1 + \frac{1}{y_1}\right) > \sqrt{y_1 \cdot \frac{1}{y_1}} = 1.
$$

つくい

We now repeat the argument to show that $1 < y_3 < y_2$, etc.

We need to borrow a result from next week's lecture:

Theorem (Sum of Geometric Series)

If $|a| < 1$, then the sequence defined by

$$
S_n = 1 - a + a^2 - a^3 + \cdots + (-1)^n a^n
$$

converges to $1/(1 + a)$.

Theorem

Let $e_n = y_n - 1$. Then (e_n) is a positive decreasing sequence with limit zero. Further, if $e_n < 1$, then

$$
e_{n+1} = \frac{\frac{1}{2}e_n^2}{1+e_n}.
$$

つくい

Proof.

Substituting $y_n = 1 + e_n$ in the iteration $y_{n+1} = (y_n + y_n^{-1})/2$, we use the geometric series when $e_n < 1$ to obtain

$$
1 + e_{n+1} = \frac{1}{2} \left(1 + e_n + \frac{1}{1 + e_n} \right)
$$

= $\frac{1}{2} \left(1 + e_n + 1 - e_n + e_n^2 - e_n^3 + e_n^4 - \cdots \right)$
= $1 + \frac{1}{2} \left(e_n^2 - e_n^3 + e_n^4 - \cdots \right)$
= $1 + \frac{1}{2} e_n^2 \left(1 - e_n + e_n^2 - \cdots \right)$
= $1 + \frac{\frac{1}{2} e_n^2}{1 + e_n}.$

 Ω

There is a clever way to characterize convergent sequences.

Definition

A real sequence (x_n) is a **Cauchy sequence** if, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$
|x_m-x_n|<\epsilon
$$

when $m, n > N$.

Theorem

A Cauchy sequence is bounded.

Proof.

There exists N such that, for $m \geq N$, we have

$$
|x_m-x_N|<1,
$$

i.e.

$$
x_N-1\leq x_m\leq x_N+1, \qquad \text{for all } m\geq N.
$$

Theorem

A convergent sequence is a Cauchy sequence.

Proof.

If $x_n \to a$, then, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$
|x_n-a|<\frac{\epsilon}{2}
$$

for $n > N$. Hence, by the Triangle inequality,

$$
|x_m - x_n| \le |x_m - a| + |a - x_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
$$

 QQ

伊 ▶ イヨ ▶ イヨ ▶

for $m, n > N$.

Theorem

A Cauchy sequence is a convergent sequence.

Proof.

We already know that a Cauchy sequence (x_n) is bounded so, by the Bolzano–Weierstrass theorem, there exists a convergent subsequence (x_{n_k}) , with limit *a* say. We can therefore choose $N \in \mathbb{N}$ such that

$$
|x_{n_k}-a|<\epsilon/2,
$$

for $n_k > N$ and (because (x_n) is a Cauchy sequence)

$$
|x_{n_k}-x_n|<\epsilon/2,
$$

for $n > N$. Hence

$$
|x_n-a|\leq |x_n-x_{n_k}|+|x_{n_k}-a|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 2: Sequences](#page-0-0)

The construction of $\mathbb R$ via Cauchy sequences in $\mathbb Q$

If $Q = (q_n)$ and $R = (r_n)$ are any two Cauchy sequences in $\mathbb Q$ for which $q_n - r_n \to 0$, as $n \to \infty$, then we write $Q \sim R$. It's not difficult to show that \sim defines an equivalence relation on the set of all Cauchy sequences in Q. The real numbers are exactly the equivalence classes. If $\langle Q \rangle$ denotes the equivalence class of rational Cauchy sequences sharing the limit of sequence Q , then we define addition and multiplication on the equivalence classes via

$$
\langle Q \rangle + \langle R \rangle = \langle Q + R \rangle \quad \text{and} \quad \langle Q \rangle \cdot \langle R \rangle = \langle Q \cdot R \rangle.
$$

 Ω