Real Analysis 2: Sequences

Brad Baxter Birkbeck College, University of London

July 7, 2023

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

Definition

We say that a sequence of real numbers a_1, a_2, \ldots is an increasing sequence if

$$\mathsf{a}_1 \leq \mathsf{a}_2 \leq \mathsf{a}_3 \leq \cdots,$$

i.e. $a_k \leq a_{k+1}$ for all $k \in \mathbb{N}$.

Example

Here are 3 increasing sequences:

● The constant sequence a_k = 1, for all k ∈ N, is an increasing sequence, albeit a rather boring example (think of increasing as really meaning non-decreasing, if it helps).

2
$$a_k = 1 - \frac{1}{k}$$
, for $k \in \mathbb{N}$.

$$a_k = 10^k$$
, for $k = 0, 1, 2, \dots$ (i.e. the index can start at 0).

Definition $\overline{(\epsilon, N_{\epsilon} \text{ definition of convergence})}$

A real sequence (a_n) is **convergent** with limit $a \in \mathbb{R}$ if, for any positive $\epsilon > 0$, there exists an integer $N \equiv N_{\epsilon}$ for which

$$|a_n - a| < \epsilon$$

for all $n \ge N$. We write $\lim_{n\to\infty} a_n = a$ or $a_n \to a$, as $n \to \infty$.

If a sequence isn't convergent, then we say it's divergent.

Example

 $a_k = 10^k$ and $b_k = (-1)^k$ are divergent sequences.

Example

If $a_n = 1$ for all $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. The key point is that $a_n - 1 = 0$, for all n, so that, given any $\epsilon > 0$, we have $|a_n - 1| < \epsilon$ for all n.

Example

If $a_n = 1 - 1/n$, for $n \in \mathbb{N}$, then $a_n \to 1$, as $n \to \infty$. Indeed, given any $\epsilon > 0$, we have

$$|a_n-1|=\frac{1}{n}<\epsilon$$

for all integer *n* such that $n > 1/\epsilon$, i.e. for all sufficiently large integer *n*, by the Archimedean Property of \mathbb{R} .

Theorem

A real increasing sequence (a_n) that is bounded above is convergent and $\lim_{n\to\infty} a_n = \sup a_n$.

Proof.

Choose any $\epsilon > 0$. If $a = \sup a_n$, then there must be at least one member of the sequence (a_n) , a_N say, in the interval $(a - \epsilon, a)$, for otherwise a would not be the least upper bound. Since (a_n) is an increasing sequence, we have

$$a-\epsilon < a_N \leq a_{N+1} \leq a_{N+2} \leq \cdots \leq a.$$

Thus $\lim_{n\to\infty} a_n = a$.

Example

Let $b_n = 1 + n^{-1}$. We shall prove that $b_n \to 1$ as $n \to \infty$. Thus, given any $\epsilon > 0$,

$$|b_n-1| = |n^{-1}| < \epsilon$$

when $n \ge N$ and $N > \epsilon^{-1}$.

Exercise: Are these sequences convergent or divergent? Find their limits if convergent.

Definition

The absolute value |x| of $x \in \mathbb{R}$ is defined by

$$x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

/□ ▶ ◀ ⋽ ▶ ◀

B> B

Theorem

If $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Theorem (The Triangle Inequality)

If $a, b \in \mathbb{R}$, then $|a + b| \le |a| + |b|$.

Proof.

We have

$$-|a| \le a \le |a|$$
 and $-|b| \le b \le |b|$,

and adding these inequalities gives

$$-(|a|+|b|) \leq a+b \leq (|a|+|b|)$$

which implies

$$|a+b| \le |a|+|b|.$$

日 ▶ ▲ □

Theorem (Alternative form of Triangle Inequality)

If $a, b \in \mathbb{R}$, then

$$|\mathbf{a}-\mathbf{b}| \geq \Big||\mathbf{a}|-|\mathbf{b}|\Big|.$$

Proof.

If we let x = a - b and y = b, then x + y = a and the triangle inequality $|x + y| \le |x| + |y|$ becomes $|a| \le |a - b| + |b|$ or

$$|a|-|b|\leq |a-b|.$$

Further, if we let x = b - a and y = a, then x + y = b and the triangle inequality becomes $|b| \le |b - a| + |a|$, or

$$|b| - |a| = -(|a| - |b|) \le |a - b|.$$

Theorem

A convergent sequence is bounded.

Proof.

If a_1, a_2, \ldots is a convergent sequence with limit a, then there exists $N \in \mathbb{N}$ for which

$$|a_n-a|<1,$$

for all $n \ge N$. In particular,

$$a-1 \leq a_n \leq a+1,$$

for all $n \ge N$. Thus the sequence is bounded.

Theorem (Sequence Addition)

Suppose $a_n \to a$ and $b_n \to b$, as $n \to \infty$. Then $a_n + b_n \to a + b$.

Proof.

Given any $\epsilon > 0$, choose a positive integer N so large that both

$$|a_n - a| < \epsilon/2$$
 and $|b_n - b| < \epsilon/2$.

Then

$$egin{aligned} |(a_n+b_n)-(a+b)|&=|(a_n-a)-(b_n-b)|\ &\leq |a_n-a|+|b_n-b|\ &<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon. \end{aligned}$$

Theorem (Sequence Multiplication)

Suppose $a_n \to a$ and $b_n \to b$, as $n \to \infty$. Then $a_n b_n \to ab$.

Proof.

Let $u_n = a_n - a$ and $v_n = b_n - b$. Then $u_n \to 0$ and $v_n \to 0$, and $a_n = a + u_n$, $b_n = b + v_n$. Further

$$a_nb_n-ab=(a+u_n)\left(b+v_n
ight)-ab=av_n+bu_n+u_nv_n.$$

Now, given any $\alpha \in (0, 1)$, there exists $N \in \mathbb{N}$ for which $|u_n| < \alpha$ and $|v_n| < \alpha$ when $n \ge N_{\alpha}$. Further, $|u_n v_n| < \alpha^2 < \alpha$, for all $n \ge N_{\alpha}$, since $\alpha \in (0, 1)$. Hence

$$\begin{aligned} |a_n b_n - ab| &= |(a + u_n) (b + v_n) - ab| \\ &= |av_n + bu_n + u_n v_n| \\ &\leq |av_n| + |bu_n| + |u_n v_n| < (|a| + |b| + 1) \alpha. \end{aligned}$$

Hence, given any $\epsilon > 0$, choose $\alpha < \frac{\epsilon}{|a|+|b|+1}$ and $n \ge N_{\alpha}$.

Suppose $a_n \to a$, $b_n \to b$ and $b \neq 0$. We shall soon prove that $a_n/b_n \to a/b$, but we shall need a simple example first.

Example

Let $b_n \rightarrow b$ and initially suppose that b > 0. Then $b_n > 0$ for all sufficiently large n, i.e. a real sequence with positive limit is ultimately positive.

The key point is the definition of convergence: given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $|b_n - b| < \epsilon$. In particular, if we choose $\epsilon = b/2$, then

$$|b_n - b| < b/2,$$

i.e.

$$-b/2 < b_n - b < b/2,$$

which implies

$$b/2 < b_n < 3b/2,$$

when $n \ge N$.

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

When the limit *b* is negative, we have b = -|b| and setting $\epsilon = |b|/2$ implies

$$-|b|/2 < b_n - b < |b|/2$$

for (say) $n \ge N$. But we can rewrite this as

$$-|b|/2 < b_n + |b| < |b|/2,$$

whence

$$-3|b|/2 < b_n < -|b|/2,$$

• • = • • = •

and $b_n < -|b|/2$ implies that $|b_n| > |b|/2$.

Theorem (Sequence Division)

Let $a_n \rightarrow a$, $b_n \rightarrow b$ and suppose that $b \neq 0$. Then

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.$$

Proof.

There exists $M \in \mathbb{N}$ such that $|b_n| > |b|/2$ for $n \ge M$. Hence

$$\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b-b_n|}{|bb_n|},$$

and, for $n \geq M$, $|b_n| > |b|/2$ implies $rac{1}{|bb_n|} < rac{2}{|b|^2}$, so that

$$\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b-b_n|}{|bb_n|}<\left(\frac{2}{|b|^2}\right)|b-b_n|$$

and this can be made arbitrarily small for all sufficiently large *n*. Thus the sequence $c_n = b_n^{-1}$ is well defined for $n \ge M$ and $c_n \to b^{-1}$. Finally, $a_n c_n \to ab^{-1}$. Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

Example

Let's use our new knowledge of sequence arithmetic. Recall that $w_n = (3n+1)/(n+4)$, for $n \ge 1$. Then, dividing numerator and denominator by n, we obtain

$$w_n = \frac{3+n^{-1}}{1+4n^{-1}} \equiv \frac{a_n}{b_n}.$$

Now $a_n \to 3$ and $b_n \to 1 \neq 0$ (by the Archimedean Property of \mathbb{R}), so $w_n \to 3$.

Theorem (Bolzano–Weierstrass)

Any sequence $(x_n)_{n \in \mathbb{N}}$ contained in the interval [0,1] has a convergent subsequence x_{n_1}, x_{n_2}, \ldots

Proof.

Define $a_0 = 0$ and $b_0 = 1$. At least one of the intervals [0, 1/2] and [1/2, 1] must contain infinitely many members of the sequence, $[a_1, b_1]$ say. Note that $b_1 - a_1 = 1/2$.

Similarly, at least one of the intervals $[a_1, a_1 + 1/4]$, $[a_1 + 1/4, b_1]$ must contain infinitely many members of the sequence, $[a_2, b_2]$ say, where $b_2 - a_2 = 2^{-2}$.

Repeating this construction, we obtain an increasing sequence (a_k) and a decreasing sequence (b_k) in [0, 1] for which $b_k - a_k = 2^{-k}$ and $[a_k, b_k]$ contains infinitely many members of (x_n) ; pick any member x_{n_k} of the sequence in $[a_k, b_k]$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Bolzano–Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof.

If the sequence (x_n) is bounded, then it's contained in a bounded interval, [a, b] say. If we define

$$y=rac{x-a}{b-a},\qquad x\in\mathbb{R},$$

then this linear function maps the interval [a, b] onto [0, 1] and it's a bijection with inverse

$$x=a+(b-a)y.$$

Now apply the previous version of Bolzano–Weierstrass to $y_n = (x_n - a)/(b - a)$ to obtain a convergent subsequence (y_{n_k}) , and hence (x_{n_k}) .

Example

Let a > 1. We shall prove that $a^{1/n} \to 1$, as $n \to \infty$. We know that $a^{1/n} > 1$, for all *n* (Why?). Hence we can write

$$a^{1/n} = 1 + d_n, \qquad n \ge 1,$$

and $d_n > 0$. The binomial theorem implies that

$$a = (1 + d_n)^n$$

= $1 + nd_n + \frac{n(n-1)}{2!}d_n^2 + \dots + d_n^n$
> nd_n ,

since every term in the binomial expansion is positive. Thus

$$d_n < \frac{a}{n}, \qquad n \ge 1,$$

CENCEN.

and therefore $d_n \to 0$, as $n \to \infty$, which implies $a^{1/n} \to 1$.

Example

We shall now show that $n^{1/n} \to 1$, as $n \to \infty$, using a slight modification of the proof technique of the previous example. We again write $n^{1/n} = 1 + d_n$, and observe that $d_n > 0$. Hence the binomial theorem implies that

$$n = (1 + d_n)^n$$

= 1 + nd_n + $\frac{n(n-1)}{2!}d_n^2 + \dots + d_n^n$
> $\frac{n(n-1)}{2!}d_n^2$,

since every term in the expansion is positive, whence

$$d_n^2 < \frac{2}{n-1},$$

for $n \ge 2$. In particular, we have shown that $d_n \to 0$, which implies that $n^{1/n} \to 1$, as $n \to \infty$.

We will study the exponential function later in this course, but we shall borrow one result from a future lecture here: if x > 0 and

$$S_m(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^m}{m!}$$

then $S_m(x)$ is a bounded increasing sequence and its limit is the exponential function exp(x).

Theorem (Exponential decay beats linear growth)

We have
$$\lim_{n\to\infty} \frac{n}{\exp(cn)} = 0$$
, for any $c > 0$.

Proof.

If x > 0, then

$$\exp(x) > S_2(x) > \frac{x^2}{2}$$

so that

$$\frac{n}{\exp(cn)} < \frac{n}{c^2n^2/2} = \frac{2}{c^2n},$$

and the upper bound tends to zero as $n \to \infty$.

Exercise: Show that, for c > 0, we have

$$\frac{n}{\exp(cn)} < \frac{n}{c^3 n^3/6} = \frac{6c^{-3}}{n^2}.$$

Exercise: Show that

$$\frac{n^2}{\exp(cn)} < \frac{6c^{-3}}{n}.$$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

Is this a contradiction?

Theorem

Let A > 0 and choose $x_1 > \sqrt{A}$. Then the sequence defined by

$$x_{n+1}=rac{1}{2}\left(x_n+rac{A}{x_n}
ight),\quad n\in\mathbb{N},$$

is decreasing and $\lim x_n = \sqrt{A}$.

Let's try it: if A = 3 and $x_1 = 2$, then we obtain:

 $\begin{aligned} x_2 &= 1.7500000000000 \\ x_3 &= 1.732142857142857 \\ x_4 &= 1.732050810014727 \\ x_5 &= 1.732050807568877, \end{aligned}$

and x_5 is correct to the number of digits displayed.

We can make life easier by defining $x_n = \sqrt{A}y_n$. Exercise: $y_{n+1} = \frac{1}{2}\left(y_n + \frac{1}{y_n}\right)$.

Theorem

Choose $y_1 > 1$. Then the sequence defined by

$$y_{n+1}=rac{1}{2}\left(y_n+rac{1}{y_n}
ight),\quad n\in\mathbb{N},$$

is decreasing and $\lim y_n = 1$. Further, if $e_n = y_n - 1 < 1$, then

$$e_{n+1}=\frac{\frac{1}{2}e_n^2}{1+e_n},$$

i.e. the error ultimately decreases quadratically: the number of correct digits ultimately doubles on each step.

Exercise: If e_1 is large, then $e_2 \approx e_1/2$.

We're going to need a simple inequality.

Theorem

Let $a, b \in \mathbb{R}$. Then

$$\frac{a^2+b^2}{2} \ge ab,$$

with equality if and only if a = b.

Proof.

We have

$$0 \le (a-b)^2 = a^2 + b^2 - 2ab,$$

with equality if and only if a = b.

Theorem (AM-GM Inequality)

If $x \ge 0$ and $y \ge 0$, then

$$\frac{x+y}{2} \ge \sqrt{xy},$$

with equality if and only if x = y.

Proof.

Let $x = a^2$ and $y = b^2$ in the previous theorem.

Now we can prove that the sequence $y_1 > 1$ and $y_{n+1} = (y_n + y_n^{-1})/2$, for $n \in \mathbb{N}$, is decreasing with limit 1.

Proof.

Now $y_1 > 1$ implies $1/y_1 < 1$, so that

$$y_2 = rac{1}{2}\left(y_1 + rac{1}{y_1}
ight) < rac{1}{2}\left(y_1 + 1
ight) < rac{1}{2}\left(y_1 + y_1
ight) = y_1.$$

Further, by the AM-GM inequality,

$$y_2 = \frac{1}{2}\left(y_1 + \frac{1}{y_1}\right) > \sqrt{y_1 \cdot \frac{1}{y_1}} = 1.$$

We now repeat the argument to show that $1 < y_3 < y_2$, etc.

We need to borrow a result from next week's lecture:

Theorem (Sum of Geometric Series)

If |a| < 1, then the sequence defined by

$$S_n = 1 - a + a^2 - a^3 + \dots + (-1)^n a^n$$

converges to 1/(1 + a).

Theorem

Let $e_n = y_n - 1$. Then (e_n) is a positive decreasing sequence with limit zero. Further, if $e_n < 1$, then

$$e_{n+1}=\frac{\frac{1}{2}e_n^2}{1+e_n}.$$

Proof.

Substituting $y_n = 1 + e_n$ in the iteration $y_{n+1} = (y_n + y_n^{-1})/2$, we use the geometric series when $e_n < 1$ to obtain

$$\begin{split} 1 + e_{n+1} &= \frac{1}{2} \left(1 + e_n + \frac{1}{1 + e_n} \right) \\ &= \frac{1}{2} \left(1 + e_n + 1 - e_n + e_n^2 - e_n^3 + e_n^4 - \cdots \right) \\ &= 1 + \frac{1}{2} \left(e_n^2 - e_n^3 + e_n^4 - \cdots \right) \\ &= 1 + \frac{1}{2} e_n^2 \left(1 - e_n + e_n^2 - \cdots \right) \\ &= 1 + \frac{\frac{1}{2} e_n^2}{1 + e_n}. \end{split}$$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

There is a clever way to characterize convergent sequences.

Definition

A real sequence (x_n) is a **Cauchy sequence** if, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$|x_m - x_n| < \epsilon$$

when $m, n \geq N$.

Theorem

A Cauchy sequence is bounded.

Proof.

There exists N such that, for $m \ge N$, we have

$$|x_m-x_N|<1,$$

i.e.

$$x_N-1 \leq x_m \leq x_N+1, \qquad \text{for all } m \geq N.$$

Theorem

A convergent sequence is a Cauchy sequence.

Proof.

If $x_n \to a$, then, given any $\epsilon > 0$, there exists $N \equiv N_{\epsilon} \in \mathbb{N}$ for which

$$|x_n-a|<rac{\epsilon}{2}$$

for $n \ge N$. Hence, by the Triangle inequality,

$$|x_m-x_n|\leq |x_m-a|+|a-x_n|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon,$$

for $m, n \geq N$.

Theorem

A Cauchy sequence is a convergent sequence.

Proof.

We already know that a Cauchy sequence (x_n) is bounded so, by the Bolzano–Weierstrass theorem, there exists a convergent subsequence (x_{n_k}) , with limit *a* say. We can therefore choose $N \in \mathbb{N}$ such that

$$|x_{n_k}-a|<\epsilon/2,$$

for $n_k \ge N$ and (because (x_n) is a Cauchy sequence)

$$|x_{n_k}-x_n|<\epsilon/2,$$

for $n \ge N$. Hence

$$|x_n-a|\leq |x_n-x_{n_k}|+|x_{n_k}-a|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon.$$

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences

The construction of $\mathbb R$ via Cauchy sequences in $\mathbb Q$

If $Q = (q_n)$ and $R = (r_n)$ are any two Cauchy sequences in \mathbb{Q} for which $q_n - r_n \to 0$, as $n \to \infty$, then we write $Q \sim R$. It's not difficult to show that \sim defines an equivalence relation on the set of all Cauchy sequences in \mathbb{Q} . The real numbers are exactly the equivalence classes. If $\langle Q \rangle$ denotes the equivalence class of rational Cauchy sequences sharing the limit of sequence Q, then we define addition and multiplication on the equivalence classes via

$$\langle Q \rangle + \langle R \rangle = \langle Q + R \rangle$$
 and $\langle Q \rangle \cdot \langle R \rangle = \langle Q \cdot R \rangle.$