
Real Analysis 2: Sequences

Brad Baxter
Birkbeck College, University of London

July 7, 2023

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences



You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), “How to Think about
Analysis”, Oxford University Press.
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Definition

We say that a sequence of real numbers a1, a2, . . . is an increasing
sequence if

a1 ≤ a2 ≤ a3 ≤ · · · ,

i.e. ak ≤ ak+1 for all k ∈ N.

Example

Here are 3 increasing sequences:

1 The constant sequence ak = 1, for all k ∈ N, is an increasing
sequence, albeit a rather boring example (think of increasing
as really meaning non-decreasing, if it helps).

2 ak = 1− 1
k , for k ∈ N.

3 ak = 10k , for k = 0, 1, 2, . . . (i.e. the index can start at 0).

Brad Baxter Birkbeck College, University of London Real Analysis 2: Sequences



Definition (ε,Nε definition of convergence)

A real sequence (an) is convergent with limit a ∈ R if, for any
positive ε > 0, there exists an integer N ≡ Nε for which

|an − a| < ε

for all n ≥ N. We write limn→∞ an = a or an → a, as n→∞.

If a sequence isn’t convergent, then we say it’s divergent.

Example

ak = 10k and bk = (−1)k are divergent sequences.
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Example

If an = 1 for all n ∈ N, then an → 1, as n→∞. The key point is
that an − 1 = 0, for all n, so that, given any ε > 0, we have
|an − 1| < ε for all n.

Example

If an = 1− 1/n, for n ∈ N, then an → 1, as n→∞. Indeed, given
any ε > 0, we have

|an − 1| =
1

n
< ε

for all integer n such that n > 1/ε, i.e. for all sufficiently large
integer n, by the Archimedean Property of R.
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Theorem

A real increasing sequence (an) that is bounded above is
convergent and limn→∞ an = sup an.

Proof.

Choose any ε > 0. If a = sup an, then there must be at least one
member of the sequence (an), aN say, in the interval (a− ε, a), for
otherwise a would not be the least upper bound. Since (an) is an
increasing sequence, we have

a− ε < aN ≤ aN+1 ≤ aN+2 ≤ · · · ≤ a.

Thus limn→∞ an = a.
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Example

Let bn = 1 + n−1. We shall prove that bn → 1 as n→∞. Thus,
given any ε > 0,

|bn − 1| = |n−1| < ε

when n ≥ N and N > ε−1.

Exercise: Are these sequences convergent or divergent? Find their
limits if convergent.

1 an = (−1)n, for n ∈ N.

2 an = (−1)n
n2

, for n ∈ N.

3 an = sin(300n)
n , for n ∈ N.

4

an =

{
1 if n = 10m for some m ∈ N
0 otherwise.
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Definition

The absolute value |x | of x ∈ R is defined by

|x | =

{
x if x ≥ 0,

−x if x < 0.

Theorem

If a ≥ 0, then |x | ≤ a if and only if −a ≤ x ≤ a.
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Theorem (The Triangle Inequality)

If a, b ∈ R, then |a + b| ≤ |a|+ |b|.

Proof.

We have

−|a| ≤ a ≤ |a| and − |b| ≤ b ≤ |b|,

and adding these inequalities gives

− (|a|+ |b|) ≤ a + b ≤ (|a|+ |b|)

which implies
|a + b| ≤ |a|+ |b|.
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Theorem (Alternative form of Triangle Inequality)

If a, b ∈ R, then

|a− b| ≥
∣∣∣|a| − |b|∣∣∣.

Proof.

If we let x = a− b and y = b, then x + y = a and the triangle
inequality |x + y | ≤ |x |+ |y | becomes |a| ≤ |a− b|+ |b| or

|a| − |b| ≤ |a− b|.

Further, if we let x = b − a and y = a, then x + y = b and the
triangle inequality becomes |b| ≤ |b − a|+ |a|, or

|b| − |a| = − (|a| − |b|) ≤ |a− b|.
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Theorem

A convergent sequence is bounded.

Proof.

If a1, a2, . . . is a convergent sequence with limit a, then there exists
N ∈ N for which

|an − a| < 1,

for all n ≥ N. In particular,

a− 1 ≤ an ≤ a + 1,

for all n ≥ N. Thus the sequence is bounded.
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Theorem (Sequence Addition)

Suppose an → a and bn → b, as n→∞. Then an + bn → a + b.

Proof.

Given any ε > 0, choose a positive integer N so large that both

|an − a| < ε/2 and |bn − b| < ε/2.

Then

|(an + bn)− (a + b)| = |(an − a)− (bn − b)|
≤ |an − a|+ |bn − b|

<
ε

2
+
ε

2
= ε.
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Theorem (Sequence Multiplication)

Suppose an → a and bn → b, as n→∞. Then anbn → ab.

Proof.

Let un = an − a and vn = bn − b. Then un → 0 and vn → 0, and
an = a + un, bn = b + vn. Further

anbn − ab = (a + un) (b + vn)− ab = avn + bun + unvn.

Now, given any α ∈ (0, 1), there exists N ∈ N for which |un| < α
and |vn| < α when n ≥ Nα. Further, |unvn| < α2 < α, for all
n ≥ Nα, since α ∈ (0, 1). Hence

|anbn − ab| = |(a + un) (b + vn)− ab|
= |avn + bun + unvn|
≤ |avn|+ |bun|+ |unvn| < (|a|+ |b|+ 1)α.

Hence, given any ε > 0, choose α < ε
|a|+|b|+1 and n ≥ Nα.
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Suppose an → a, bn → b and b 6= 0. We shall soon prove that
an/bn → a/b, but we shall need a simple example first.

Example

Let bn → b and initially suppose that b > 0. Then bn > 0 for all
sufficiently large n, i.e. a real sequence with positive limit is
ultimately positive.

The key point is the definition of convergence: given any ε > 0,
there exists N ∈ N such that n ≥ N implies |bn − b| < ε. In
particular, if we choose ε = b/2, then

|bn − b| < b/2,

i.e.
−b/2 < bn − b < b/2,

which implies
b/2 < bn < 3b/2,

when n ≥ N.
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When the limit b is negative, we have b = −|b| and setting ε =
|b|/2 implies

−|b|/2 < bn − b < |b|/2,

for (say) n ≥ N. But we can rewrite this as

−|b|/2 < bn + |b| < |b|/2,

whence
−3|b|/2 < bn < −|b|/2,

and bn < −|b|/2 implies that |bn| > |b|/2.
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Theorem (Sequence Division)

Let an → a, bn → b and suppose that b 6= 0. Then

lim
n→∞

an
bn

=
a

b
.

Proof.

There exists M ∈ N such that |bn| > |b|/2 for n ≥ M. Hence∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|b − bn|
|bbn|

,

and, for n ≥ M, |bn| > |b|/2 implies 1
|bbn| <

2
|b|2 , so that∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|b − bn|
|bbn|

<

(
2

|b|2

)
|b − bn|

and this can be made arbitrarily small for all sufficiently large n.
Thus the sequence cn = b−1n is well defined for n ≥ M and
cn → b−1. Finally, ancn → ab−1.
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Example

Let’s use our new knowledge of sequence arithmetic. Recall that
wn = (3n + 1)/(n + 4), for n ≥ 1. Then, dividing numerator and
denominator by n, we obtain

wn =
3 + n−1

1 + 4n−1
≡ an

bn
.

Now an → 3 and bn → 1 6= 0 (by the Archimedean Property of R),
so wn → 3.
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Theorem (Bolzano–Weierstrass)

Any sequence (xn)n∈N contained in the interval [0, 1] has a
convergent subsequence xn1 , xn2 , . . ..

Proof.

Define a0 = 0 and b0 = 1. At least one of the intervals [0, 1/2]
and [1/2, 1] must contain infinitely many members of the
sequence, [a1, b1] say. Note that b1 − a1 = 1/2.

Similarly, at least one of the intervals [a1, a1 + 1/4], [a1 + 1/4, b1]
must contain infinitely many members of the sequence, [a2, b2] say,
where b2 − a2 = 2−2.

Repeating this construction, we obtain an increasing sequence (ak)
and a decreasing sequence (bk) in [0, 1] for which bk − ak = 2−k

and [ak , bk ] contains infinitely many members of (xn); pick any
member xnk of the sequence in [ak , bk ].
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Theorem (Bolzano–Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof.

If the sequence (xn) is bounded, then it’s contained in a bounded
interval, [a, b] say. If we define

y =
x − a

b − a
, x ∈ R,

then this linear function maps the interval [a, b] onto [0, 1] and it’s
a bijection with inverse

x = a + (b − a) y .

Now apply the previous version of Bolzano–Weierstrass to
yn = (xn − a)/(b − a) to obtain a convergent subsequence (ynk ),
and hence (xnk ).
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Example

Let a > 1. We shall prove that a1/n → 1, as n→∞. We know
that a1/n > 1, for all n (Why?). Hence we can write

a1/n = 1 + dn, n ≥ 1,

and dn > 0. The binomial theorem implies that

a = (1 + dn)n

= 1 + ndn +
n(n − 1)

2!
d2
n + · · ·+ dn

n

> ndn,

since every term in the binomial expansion is positive. Thus

dn <
a

n
, n ≥ 1,

and therefore dn → 0, as n→∞, which implies a1/n → 1.
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Example

We shall now show that n1/n → 1, as n→∞, using a slight
modification of the proof technique of the previous example. We
again write n1/n = 1 + dn, and observe that dn > 0. Hence the
binomial theorem implies that

n = (1 + dn)n

= 1 + ndn +
n(n − 1)

2!
d2
n + · · ·+ dn

n

>
n(n − 1)

2!
d2
n ,

since every term in the expansion is positive, whence

d2
n <

2

n − 1
,

for n ≥ 2. In particular, we have shown that dn → 0, which implies
that n1/n → 1, as n→∞.
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We will study the exponential function later in this course, but we
shall borrow one result from a future lecture here: if x > 0 and

Sm(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xm

m!
,

then Sm(x) is a bounded increasing sequence and its limit is the
exponential function exp(x).

Theorem (Exponential decay beats linear growth)

We have limn→∞
n

exp(cn) = 0, for any c > 0.

Proof.

If x > 0, then

exp(x) > S2(x) >
x2

2

so that
n

exp(cn)
<

n

c2n2/2
=

2

c2n
,

and the upper bound tends to zero as n→∞.
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Exercise: Show that, for c > 0, we have

n

exp(cn)
<

n

c3n3/6
=

6c−3

n2
.

Exercise: Show that
n2

exp(cn)
<

6c−3

n
.
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Exercise: Show that
n100

exp(n)
<

101!

n
.

Hence n100/ exp(n)→ 0 as n→∞. However,

10100

exp(10)
≈ 4.54× 1095.

Is this a contradiction?
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Theorem

Let A > 0 and choose x1 >
√
A. Then the sequence defined by

xn+1 =
1

2

(
xn +

A

xn

)
, n ∈ N,

is decreasing and lim xn =
√
A.

Let’s try it: if A = 3 and x1 = 2, then we obtain:

x2 = 1.750000000000000

x3 = 1.732142857142857

x4 = 1.732050810014727

x5 = 1.732050807568877,

and x5 is correct to the number of digits displayed.
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We can make life easier by defining xn =
√
Ayn.

Exercise: yn+1 = 1
2

(
yn + 1

yn

)
.

Theorem

Choose y1 > 1. Then the sequence defined by

yn+1 =
1

2

(
yn +

1

yn

)
, n ∈ N,

is decreasing and lim yn = 1. Further, if en = yn − 1 < 1, then

en+1 =
1
2e

2
n

1 + en
,

i.e. the error ultimately decreases quadratically: the number of
correct digits ultimately doubles on each step.

Exercise: If e1 is large, then e2 ≈ e1/2.
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We’re going to need a simple inequality.

Theorem

Let a, b ∈ R. Then
a2 + b2

2
≥ ab,

with equality if and only if a = b.

Proof.

We have
0 ≤ (a− b)2 = a2 + b2 − 2ab,

with equality if and only if a = b.
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Theorem (AM-GM Inequality)

If x ≥ 0 and y ≥ 0, then

x + y

2
≥ √xy ,

with equality if and only if x = y .

Proof.

Let x = a2 and y = b2 in the previous theorem.
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Now we can prove that the sequence y1 > 1 and
yn+1 = (yn + y−1n )/2, for n ∈ N, is decreasing with limit 1.

Proof.

Now y1 > 1 implies 1/y1 < 1, so that

y2 =
1

2

(
y1 +

1

y1

)
<

1

2
(y1 + 1) <

1

2
(y1 + y1) = y1.

Further, by the AM-GM inequality,

y2 =
1

2

(
y1 +

1

y1

)
>

√
y1 ·

1

y1
= 1.

We now repeat the argument to show that 1 < y3 < y2, etc.
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We need to borrow a result from next week’s lecture:

Theorem (Sum of Geometric Series)

If |a| < 1, then the sequence defined by

Sn = 1− a + a2 − a3 + · · ·+ (−1)nan

converges to 1/(1 + a).

Theorem

Let en = yn − 1. Then (en) is a positive decreasing sequence with
limit zero. Further, if en < 1, then

en+1 =
1
2e

2
n

1 + en
.
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Proof.

Substituting yn = 1 + en in the iteration yn+1 = (yn + y−1n )/2, we
use the geometric series when en < 1 to obtain

1 + en+1 =
1

2

(
1 + en +

1

1 + en

)
=

1

2

(
1 + en + 1− en + e2n − e3n + e4n − · · ·

)
= 1 +

1

2

(
e2n − e3n + e4n − · · ·

)
= 1 +

1

2
e2n
(
1− en + e2n − · · ·

)
= 1 +

1
2e

2
n

1 + en
.
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There is a clever way to characterize convergent sequences.

Definition

A real sequence (xn) is a Cauchy sequence if, given any ε > 0,
there exists N ≡ Nε ∈ N for which

|xm − xn| < ε

when m, n ≥ N.

Theorem

A Cauchy sequence is bounded.

Proof.

There exists N such that, for m ≥ N, we have

|xm − xN | < 1,

i.e.
xN − 1 ≤ xm ≤ xN + 1, for all m ≥ N.
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Theorem

A convergent sequence is a Cauchy sequence.

Proof.

If xn → a, then, given any ε > 0, there exists N ≡ Nε ∈ N for
which

|xn − a| < ε

2

for n ≥ N. Hence, by the Triangle inequality,

|xm − xn| ≤ |xm − a|+ |a− xn| <
ε

2
+
ε

2
= ε,

for m, n ≥ N.
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Theorem

A Cauchy sequence is a convergent sequence.

Proof.

We already know that a Cauchy sequence (xn) is bounded so, by
the Bolzano–Weierstrass theorem, there exists a convergent
subsequence (xnk ), with limit a say. We can therefore choose
N ∈ N such that

|xnk − a| < ε/2,

for nk ≥ N and (because (xn) is a Cauchy sequence)

|xnk − xn| < ε/2,

for n ≥ N. Hence

|xn − a| ≤ |xn − xnk |+ |xnk − a| < ε

2
+
ε

2
= ε.
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The construction of R via Cauchy sequences in Q
If Q = (qn) and R = (rn) are any two Cauchy sequences in Q for
which qn − rn → 0, as n→∞, then we write Q ∼ R. It’s not
difficult to show that ∼ defines an equivalence relation on the set
of all Cauchy sequences in Q. The real numbers are exactly the
equivalence classes. If 〈Q〉 denotes the equivalence class of rational
Cauchy sequences sharing the limit of sequence Q, then we define
addition and multiplication on the equivalence classes via

〈Q〉+ 〈R〉 = 〈Q + R〉 and 〈Q〉 · 〈R〉 = 〈Q · R〉.
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