Real Analysis 3.5: Power Series

Brad Baxter Birkbeck College, University of London

May 25, 2023

化重变 化重

つくへ

Brad Baxter Birkbeck College, University of London [Real Analysis 3.5: Power Series](#page-11-0)

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books:

Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

J. C. Burkill (1978), "A First Course in Mathematical Analysis", Cambridge University Press.

 $\mathcal{A} \ \overline{\cong} \ \mathcal{B} \ \ \mathcal{A} \ \ \overline{\cong} \ \ \mathcal{B}$

 200

A power series is an infinite series of the form

$$
\sum_{n=0}^{\infty} a_n z^n,
$$

where (a_n) is a complex sequence and $z \in \mathbb{C}$. This is still an infinite series, so it's convergent if and only if its partial sums

$$
s_N = \sum_{n=0}^N a_n z^n, \quad \text{for } N = 0, 1, \ldots,
$$

 Ω

form a convergence sequence.

Theorem

Suppose $w \in \mathbb{C}$, $w \neq 0$ and $\sum_{n=0}^{\infty} a_n w^n$ is convergent. Then $\sum_{n=0}^{\infty} a_n z^n$ is absolutely convergent for all $|z| < |w|$.

Proof.

If $\sum_{n=0}^{\infty} a_n w^n$ is convergent, then $a_n w^n \to 0$ as $n \to \infty$. Then there exists $N \in \mathbb{N}$ such that $|a_n w^n| \leq 1$ for $n \geq N$. Therefore, if $|z| < |w|$ and $n \geq N$, we obtain

$$
|a_nz^n|=|a_nw^n|\,|(z/w)^n|\leq\left|\frac{z}{w}\right|^n.
$$

Thus the series is absolutely convergent for all $|z| < |w|$:

$$
\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} |a_n z^n|
$$

$$
\leq \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} \left| \frac{z}{w} \right|^n
$$

Now let's study the error:

$$
E_M(z) = \sum_{n=0}^{\infty} a_n z^n - \sum_{n=0}^{M-1} a_n z^n = \sum_{n=M}^{\infty} a_n z^n.
$$

If $|z/w| \leq A < 1$ and $M \geq N$, then

$$
|E_M(z)| \leq \sum_{n=M}^{\infty} |a_n z^n| \leq \sum_{n=M}^{\infty} \left|\frac{z}{w}\right|^n \leq \sum_{n=M}^{\infty} A^n = \frac{A^n}{1-A}.
$$

化重新润滑脂

 200

In other words the error can be made **uniformly small** in $|z| \leq A|w|$, where $A \in (0,1)$.

Theorem (Disc and Radius of Convergence)

Let

$$
f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n
$$

and let S be the set of z for which this converges and let

$$
R=\sup\{|z-z_0|:z\in S\}.
$$

We write $R = +\infty$ if S is unbounded. The power series is absolutely convergent if $|z - z_0| < R$ and divergent for $|z - z_0| > R$. The set

$$
\{z\in\mathbb{C}:|z-z_0|< R\}
$$

is called the **disc of convergence** and R is called the **radius of** convergence. We call $\{z \in \mathbb{C} : |z| = R\}$ the circle of convergence.

つくい

Proof.

We know S is nonempty because $0 \in S$. If $R = \infty$, then the power series is convergent for all $z \in \mathbb{C}$, and hence absolutely convergent for all $z \in \mathbb{C}$.

If $R > 0$, then the power series converges absolutely for $|z| < R$, by the previous theorem.

Further, if the power series converged for $|w| > R$, then it would converge for any z satisfying $R < |z| < |w|$, which contradicts the definition of R.

Nothing has been proved about convergence or divergence on the circle of convergence.

Theorem (Ratio test for convergence of power series)

If the ratios $|a_{n+1}/a_n| \to L$ as $n \to \infty$, then the radius of convergence $R = 1/L$.

Proof.

By the Ratio test we have absolute convergence if

$$
\lim_{n\to\infty}\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|<1,
$$

i.e. if $|z| < 1/L$. Further, if $|z| > 1/L$, then

$$
\lim_{n\to\infty}\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|>1,
$$

so the *n*th term $a_n z^n$ does not tend to zero.

Brad Baxter Birkbeck College, University of London [Real Analysis 3.5: Power Series](#page-0-0)

Example (Warning: the Ratio test might not be applicable!)

Suppose

$$
f(z) = 1 + z^2 + z^4 + z^6 + \cdots,
$$

i.e. $a_n = 1$ for even n, but $a_n = 0$ for odd n. Then the ratio $|a_{n+1}/a_n|$ is not even defined for odd *n*, so we cannot use the Ratio test here. We can, however, use the Root test, since

$$
|a_nz^n|^{1/n}=|a_n|^{1/n}|z|\leq |z|,
$$

つくい

so the series is convergent if $|z| < 1$.

Theorem (Root test criterion for power series)

If $L > 0$ satisfies $|a_n|^{1/n} \leq L$ for all sufficiently large n, then the radius of convergence satisfies $R \geq 1/L$.

Proof.

We have

$$
|a_nz^n|^{1/n}=|a_n|^{1/n}|z|\leq L|z|,
$$

化重复化重复

 200

so the power series is absolutely convergent for $|z| < 1/L$.

Optional extra

Theorem (Radius of convergence formula)

Let

$$
L_n=\sup\{|a_k|^{1/k}:k\geq n\}.
$$

Then (L_n) is a decreasing sequence of non-negative numbers, so it's convergent: let $L = \lim_{n\to\infty} L_n$. Then the radius of convergence is given by $R = 1/L$ if $L > 0$, while $R = \infty$ if $L = 0$.

Proof.

Given any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ for which $L \leq L_n \leq L + \epsilon$ for all $n \geq N_{\epsilon}$. Hence, if $n \geq N_{\epsilon}$, then

$$
|a_n z^n|^{1/n} = |a_n|^{1/n} |z| < (L+\epsilon) |z|.
$$

Thus we require $|z| < 1/(L + \epsilon)$ for convergence. Since $\epsilon > 0$ was arbitrary, we require $|z| < 1/L$. Conversely, if $L|z| > 1$, then $|L_n|z| > 1$, for all *n*, and we have divergence.

つくい

Example (Root test is stronger than Ratio test)

The power series

$$
f(z) = 1 + z + z^2 + z^3 + \cdots = \frac{1}{1 - z}
$$

is absolutely convergent for $|z| < 1$ and has radius of convergence $R = 1$. Hence $g(z) = f(z) + f(z^3) = 1/(1-z) + 2/(1-z^3)$, for $|z| < 1$, and

$$
g(z)=\sum_{k=0}^{\infty}a_kz^k
$$

where $a_k = 2$ when k is an integer multiple of 3, but is otherwise equal to 1. Thus $a_k/a_{k-1} = 2$ when k is a multiple of 3, so the Ratio test cannot prove that this power series is convergent. The root test does, since $2^{1/n} \rightarrow 1$, as $n \rightarrow \infty$.