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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books:
Lara Alcock (2014), “How to Think about Analysis”, Oxford
University Press.

J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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A power series is an infinite series of the form

∞∑
n=0

anz
n,

where (an) is a complex sequence and z ∈ C. This is still an
infinite series, so it’s convergent if and only if its partial sums

sN =
N∑

n=0

anz
n, for N = 0, 1, . . . ,

form a convergence sequence.
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Theorem

Suppose w ∈ C, w 6= 0 and
∑∞

n=0 anw
n is convergent. Then∑∞

n=0 anz
n is absolutely convergent for all |z | < |w |.

Proof.

If
∑∞

n=0 anw
n is convergent, then anw

n → 0 as n→∞. Then
there exists N ∈ N such that |anwn| ≤ 1 for n ≥ N. Therefore, if
|z | < |w | and n ≥ N, we obtain

|anzn| = |anwn| |(z/w)n| ≤
∣∣∣ z
w

∣∣∣n .
Thus the series is absolutely convergent for all |z | < |w |:

∞∑
n=0

|anzn| =
N−1∑
n=0

|anzn|+
∞∑

n=N

|anzn|

≤
N−1∑
n=0

|anzn|+
∞∑

n=N

∣∣∣ z
w

∣∣∣n
≤

N−1∑
n=0

|anzn|+
|z/w |N

1− |z/w |
.
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Now let’s study the error:

EM(z) =
∞∑
n=0

anz
n −

M−1∑
n=0

anz
n =

∞∑
n=M

anz
n.

If |z/w | ≤ A < 1 and M ≥ N, then

|EM(z)| ≤
∞∑

n=M

|anzn| ≤
∞∑

n=M

∣∣∣ z
w

∣∣∣n ≤ ∞∑
n=M

An =
An

1− A
.

In other words the error can be made uniformly small in
|z | ≤ A|w |, where A ∈ (0, 1).
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Theorem (Disc and Radius of Convergence)

Let

f (z) =
∞∑
n=0

an(z − z0)n

and let S be the set of z for which this converges and let

R = sup{|z − z0| : z ∈ S}.

We write R = +∞ if S is unbounded. The power series is
absolutely convergent if |z − z0| < R and divergent for
|z − z0| > R. The set

{z ∈ C : |z − z0| < R}

is called the disc of convergence and R is called the radius of
convergence. We call {z ∈ C : |z | = R} the circle of
convergence.
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Proof.

We know S is nonempty because 0 ∈ S . If R =∞, then the power
series is convergent for all z ∈ C, and hence absolutely convergent
for all z ∈ C.

If R > 0, then the power series converges absolutely for |z | < R,
by the previous theorem.

Further, if the power series converged for |w | > R, then it would
converge for any z satisfying R < |z | < |w |, which contradicts the
definition of R.
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Nothing has been proved about convergence or divergence on the
circle of convergence.

Theorem (Ratio test for convergence of power series)

If the ratios |an+1/an| → L as n→∞, then the radius of
convergence R = 1/L.

Proof.

By the Ratio test we have absolute convergence if

lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ < 1,

i.e. if |z | < 1/L. Further, if |z | > 1/L, then

lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ > 1,

so the nth term anz
n does not tend to zero.
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Example (Warning: the Ratio test might not be applicable!)

Suppose
f (z) = 1 + z2 + z4 + z6 + · · · ,

i.e. an = 1 for even n, but an = 0 for odd n. Then the ratio
|an+1/an| is not even defined for odd n, so we cannot use the Ratio
test here. We can, however, use the Root test, since

|anzn|1/n = |an|1/n|z | ≤ |z |,

so the series is convergent if |z | < 1.
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Theorem (Root test criterion for power series)

If L > 0 satisfies |an|1/n ≤ L for all sufficiently large n, then the
radius of convergence satisfies R ≥ 1/L.

Proof.

We have
|anzn|1/n = |an|1/n|z | ≤ L|z |,

so the power series is absolutely convergent for |z | < 1/L.
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Optional extra

Theorem (Radius of convergence formula)

Let
Ln = sup{|ak |1/k : k ≥ n}.

Then (Ln) is a decreasing sequence of non-negative numbers, so
it’s convergent: let L = limn→∞ Ln. Then the radius of
convergence is given by R = 1/L if L > 0, while R =∞ if L = 0.

Proof.

Given any ε > 0, there exists Nε ∈ N for which L ≤ Ln < L + ε for
all n ≥ Nε. Hence, if n ≥ Nε, then

|anzn|1/n = |an|1/n|z | < (L + ε)|z |.

Thus we require |z | < 1/(L + ε) for convergence. Since ε > 0 was
arbitrary, we require |z | < 1/L. Conversely, if L|z | > 1, then
Ln|z | > 1, for all n, and we have divergence.
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Example (Root test is stronger than Ratio test)

The power series

f (z) = 1 + z + z2 + z3 + · · · =
1

1− z

is absolutely convergent for |z | < 1 and has radius of convergence
R = 1. Hence g(z) = f (z) + f (z3) = 1/(1− z) + 2/(1− z3), for
|z | < 1, and

g(z) =
∞∑
k=0

akz
k

where ak = 2 when k is an integer multiple of 3, but is otherwise
equal to 1. Thus ak/ak−1 = 2 when k is a multiple of 3, so the
Ratio test cannot prove that this power series is convergent. The
root test does, since 21/n → 1, as n→∞.
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