Real Analysis 3.5: Power Series

Brad Baxter Birkbeck College, University of London

May 25, 2023

< ∃ >

Brad Baxter Birkbeck College, University of London Real Analysis 3.5: Power Series

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books:

Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

J. C. Burkill (1978), "A First Course in Mathematical Analysis", Cambridge University Press.

A power series is an infinite series of the form

$$\sum_{n=0}^{\infty}a_nz^n,$$

where (a_n) is a complex sequence and $z \in \mathbb{C}$. This is still an infinite series, so it's convergent if and only if its partial sums

$$s_N = \sum_{n=0}^N a_n z^n,$$
 for $N = 0, 1, \dots,$

form a convergence sequence.

Theorem

Suppose $w \in \mathbb{C}$, $w \neq 0$ and $\sum_{n=0}^{\infty} a_n w^n$ is convergent. Then $\sum_{n=0}^{\infty} a_n z^n$ is absolutely convergent for all |z| < |w|.

Proof.

If $\sum_{n=0}^{\infty} a_n w^n$ is convergent, then $a_n w^n \to 0$ as $n \to \infty$. Then there exists $N \in \mathbb{N}$ such that $|a_n w^n| \le 1$ for $n \ge N$. Therefore, if |z| < |w| and $n \ge N$, we obtain

$$|a_n z^n| = |a_n w^n| |(z/w)^n| \leq \left|\frac{z}{w}\right|^n$$
.

Thus the series is absolutely convergent for all |z| < |w|:

$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} |a_n z^n|$$
$$\leq \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} \left|\frac{z}{w}\right|^n$$

Now let's study the error:

$$E_M(z)=\sum_{n=0}^{\infty}a_nz^n-\sum_{n=0}^{M-1}a_nz^n=\sum_{n=M}^{\infty}a_nz^n.$$

If $|z/w| \leq A < 1$ and $M \geq N$, then

$$|E_M(z)| \leq \sum_{n=M}^{\infty} |a_n z^n| \leq \sum_{n=M}^{\infty} \left|\frac{z}{w}\right|^n \leq \sum_{n=M}^{\infty} A^n = \frac{A^n}{1-A}.$$

In other words the error can be made **uniformly small** in $|z| \le A|w|$, where $A \in (0, 1)$.

Theorem (Disc and Radius of Convergence)

Let

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

and let S be the set of z for which this converges and let

$$R = \sup\{|z - z_0| : z \in S\}.$$

We write $R = +\infty$ if S is unbounded. The power series is absolutely convergent if $|z - z_0| < R$ and divergent for $|z - z_0| > R$. The set

$$\{z \in \mathbb{C} : |z - z_0| < R\}$$

is called the disc of convergence and R is called the radius of convergence. We call $\{z \in \mathbb{C} : |z| = R\}$ the circle of convergence.

Proof.

We know S is nonempty because $0 \in S$. If $R = \infty$, then the power series is convergent for all $z \in \mathbb{C}$, and hence absolutely convergent for all $z \in \mathbb{C}$.

If R > 0, then the power series converges absolutely for |z| < R, by the previous theorem.

Further, if the power series converged for |w| > R, then it would converge for any z satisfying R < |z| < |w|, which contradicts the definition of R.

Nothing has been proved about convergence or divergence on the circle of convergence.

Theorem (Ratio test for convergence of power series)

If the ratios $|a_{n+1}/a_n| \rightarrow L$ as $n \rightarrow \infty$, then the radius of convergence R = 1/L.

Proof.

By the Ratio test we have absolute convergence if

$$\lim_{n\to\infty}\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|<1,$$

i.e. if |z| < 1/L. Further, if |z| > 1/L, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|>1,$$

so the *n*th term $a_n z^n$ does not tend to zero.

Example (Warning: the Ratio test might not be applicable!)

Suppose

$$f(z) = 1 + z^2 + z^4 + z^6 + \cdots$$

i.e. $a_n = 1$ for even *n*, but $a_n = 0$ for odd *n*. Then the ratio $|a_{n+1}/a_n|$ is not even defined for odd *n*, so we cannot use the Ratio test here. We can, however, use the Root test, since

$$|a_n z^n|^{1/n} = |a_n|^{1/n} |z| \le |z|,$$

so the series is convergent if |z| < 1.

Theorem (Root test criterion for power series)

If L > 0 satisfies $|a_n|^{1/n} \le L$ for all sufficiently large n, then the radius of convergence satisfies $R \ge 1/L$.

Proof.

We have

$$|a_n z^n|^{1/n} = |a_n|^{1/n} |z| \le L|z|,$$

★ ∃ → ★

so the power series is absolutely convergent for |z| < 1/L.

Optional extra

Theorem (Radius of convergence formula)

Let

$$L_n = \sup\{|a_k|^{1/k} : k \ge n\}.$$

Then (L_n) is a decreasing sequence of non-negative numbers, so it's convergent: let $L = \lim_{n\to\infty} L_n$. Then the radius of convergence is given by R = 1/L if L > 0, while $R = \infty$ if L = 0.

Proof.

Given any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ for which $L \leq L_n < L + \epsilon$ for all $n \geq N_{\epsilon}$. Hence, if $n \geq N_{\epsilon}$, then

$$|a_n z^n|^{1/n} = |a_n|^{1/n} |z| < (L + \epsilon)|z|.$$

Thus we require $|z| < 1/(L + \epsilon)$ for convergence. Since $\epsilon > 0$ was arbitrary, we require |z| < 1/L. Conversely, if L|z| > 1, then $L_n|z| > 1$, for all *n*, and we have divergence.

Example (Root test is stronger than Ratio test)

The power series

$$f(z) = 1 + z + z^2 + z^3 + \dots = \frac{1}{1-z}$$

is absolutely convergent for |z| < 1 and has radius of convergence R = 1. Hence $g(z) = f(z) + f(z^3) = 1/(1-z) + 2/(1-z^3)$, for |z| < 1, and

$$g(z) = \sum_{k=0}^{\infty} a_k z^k$$

where $a_k = 2$ when k is an integer multiple of 3, but is otherwise equal to 1. Thus $a_k/a_{k-1} = 2$ when k is a multiple of 3, so the Ratio test cannot prove that this power series is convergent. The root test does, since $2^{1/n} \rightarrow 1$, as $n \rightarrow \infty$.