
Real Analysis 3: Series

Brad Baxter
Birkbeck College, University of London

June 8, 2023

Brad Baxter Birkbeck College, University of London Real Analysis 3: Series



You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), “How to Think about
Analysis”, Oxford University Press.
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1700s: Approximation of trigonometric and other functions by
polynomials, e.g.

cos x ≈ 1− 1

2
x2 +

1

4!
x4.

The higher the polynomial degree, the better the approximation
(usually). This led to infinite series, e.g.

1 + r + r2 + r3 + · · · =
1

1− r
,

which is valid for |r | < 1 but not for |r | > 1, as we shall soon see.
The case r = −1 is particularly worrying: the RHS makes sense
and is equal to 1/2, but we can write the LHS as

1− 1 + (1− 1) + (1− 1) + · · ·

which looks like it should give zero, while different brackets yield

1 + (−1 + 1) + (−1 + 1) · · ·

which looks like it should be equal to 1! It’s not a good sign.
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Definition

Let a1, a2, . . . be any real sequence. We define the nth partial sum

Sn = a1 + a2 + · · ·+ an, for n ∈ N.

If the sequence (Sn) is convergent, with limit S , then we say that
the series

∞∑
n=1

an

is convergent with limit S . If (Sn) isn’t convergent, then we say
that the series is divergent.

NB I’ve labelled the sequence a1, a2, . . ., but the same definition
works if our sequence is labelled a0, a1, . . ..
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Example

Let an = (−1)n, for non-negative integer n. Then

Sn = 1− 1 + 1− 1 + · · ·+ (−1)n, n ≥ 0.

Thus Sn = 0 when n is odd, but Sn = 1 when n is even. We see
that the sequence (Sn) is divergent, so the infinite series

∞∑
n=0

(−1)n

is divergent too.

Brad Baxter Birkbeck College, University of London Real Analysis 3: Series



Theorem (Cauchy convergence condition for series)

If (ak) is a real sequence and

Sn =
n∑

k=1

ak , n ∈ N,

are its partial sums, then the series
∑

ak is convergent if and only
if (Sn) is a Cauchy sequence. In other words, for any ε > 0, there
exists N ∈ N for which ∣∣∣∣∣

n+p∑
k=n

ak

∣∣∣∣∣ < ε

for any n ≥ N and p ∈ N.

Proof.

The partial sums are convergent if and only if they form a Cauchy
sequence.
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Theorem

If
∑

ak and
∑

bk are convergent series and P,Q ∈ R, then∑
(Pak + Qbk) is also convergent and

∞∑
k=1

(Pak + Qbk) = P
∞∑
k=1

ak + Q
∞∑
k=1

bk .

Proof.

The partial sums

An =
n∑

k=1

ak and Bn =
n∑

k=1

bk

are both convergent sequences, with limits
A = limn→∞ An =

∑∞
k=1 ak and B = limn→∞ Bn =

∑∞
k=1 bk .

Hence (PAn + QBn) is a convergent sequence with limit
PA + QB.
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Theorem (Telescoping Series)

Let ak = bk+1 − bk , for k ∈ N. Then
∑

ak is convergent if and
only if the sequence (bk) is convergent, in which case

∞∑
k=1

ak = lim
k→∞

bk − b1.

Proof.
n∑

k=1

ak =
n∑

k=1

(bk+1 − bk) = bn+1 − b1.
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Example (Telescoping series)

Let

ak =
1

k(k + 1)
, k ∈ N.

This is a telescoping series in disguise, since (Exercise)

ak =
1

k
− 1

k + 1
≡ bk − bk+1,

for k ∈ N. Since bk = 1/k → 0, as k →∞, the series∑n
k=1 ak → b1 = 1, as n→∞.
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Example (Comparison of series)

We can use the convergence of
∑

ak when

ak =
1

k(k + 1)
, k ∈ N,

to prove the convergence of

∞∑
k=1

1

k2
.

The key point is comparison:

k(k + 1)

k2
= 1 + (1/k)→ 1, as k →∞,

so we can choose K ∈ N for which 1/k2 ≤ 2ak , for k ≥ K .
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Theorem (Comparison Test 1)

Suppose 0 ≤ ak ≤ bk for all k ∈ N. If the series
∑∞

k=1 bk is
convergent, then so is the series

∑∞
k=1 ak .

Proof.

The partial sums

Bn =
n∑

k=1

bk

are increasing with limit B, say, since the series
∑

bk is
convergent. Then the partial sums

An =
n∑

k=1

ak

satisfy An ≤ Bn ≤ B and (An) is a bounded increasing sequence,
since the ak are non-negative. Hence the partial sums (An) are
convergent, with limit A satisfying A ≤ B.
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There are several variants of the Comparison Test.

Theorem (Comparison Test 2)

Let (ak) and (bk) be sequences of positive numbers for which
there exists N ∈ N and a constant C > 0 such that

0 ≤ ak ≤ Cbk , for k ≥ N.

If
∑

bk is convergent, then
∑

ak is convergent.

Proof.

This is an easy exercise.

Brad Baxter Birkbeck College, University of London Real Analysis 3: Series



Definition

A series
∑∞

k=1 ak is absolutely convergent if
∑∞

k=1 |ak | is
convergent. A convergent series that is not absolutely convergent
is called conditionally convergent

Absolutely convergent series are easier to deal with. Conditionally
convergent series rely on delicate cancellation to achieve
convergence. The series

∑∞
k=1 |ak | is convergent if and only if

∞∑
k=1

|ak | <∞.
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Example (Conditionally convergent series)

We shall see later that

∞∑
n=1

(−1)n−1

n
= log 2

but
∞∑
n=1

1

n
=∞.

This this is a conditionally convergent series, not an absolutely
convergent series.
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Theorem (Absolute convergence implies convergence)

If
∑
|ak | <∞, then

∑
ak is convergent.

Proof.

We use the Cauchy condition for series and the triangle inequality:∣∣∣∣∣
n+p∑
k=n

ak

∣∣∣∣∣ ≤
n+p∑
k=n

|ak |.
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Example (Absolute convergent series)

We have already seen that

∞∑
k=1

1

k2
<∞.

Hence
∞∑
k=1

sin(2kπ/3)

k2
<∞

is also convergent.
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Theorem (The Non-null test)

If
∑

ak is a convergent series, then ak → 0 as k →∞.

Proof.

If the partial sums

Sn =
n∑

k=1

ak , for n ∈ N,

form a convergent sequence, then we must have Sn → S , say. But
then an = Sn − Sn−1 → S − S = 0.

Example

If

ak =
k2 − 1

k2 + 1
, k ∈ N,

then (Exercise!) ak → 1 as k →∞. Hence
∑

ak is divergent, by
the Non-null test.
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Example (12 + 1
4 + 1

8 + 1
16 + · · · = 1)

Let an = 2−n, for n ≥ 1. The the k-th partial sum

sk = 2−1 + 2−2 + · · ·+ 2−k , k ≥ 1,

satisfies
2−1sk = 2−2 + 2−3 + · · ·+ 2−(k+1).

Subtracting the second equation from the first, we obtain

2−1sk = 2−1 − 2−(k+1),

whence
sk = 1− 2−k .

Thus sk → 1 as k →∞.
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Exercise: Prove that

N+P∑
n=N

2−n = 2−(N−1)
(

1− 2−(P+1)
)
≤ 2−(N−1),

for any positive integers N and P.
Of course, this is an example of a geometric series.
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Theorem (Sum of Geometric Series)

If |w | < 1, then
∞∑
n=0

wn =
1

1− w
.

Proof.

Let
sn = 1 + w + w2 + · · ·+ wn−2 + wn−1.

Then
wsn = w + w2 + · · ·+ wn−1 + wn.

Subtracting these equations, we find

(1− w) sn = 1− wn or sn =
1− wn

1− w
.

Hence
∣∣∣ 1
1−w − sn

∣∣∣ = |w |n
|1−w | → 0, as n→∞, since |w | < 1.
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Example

Let

bn =
1010 + sin (25n)

2n
, n ≥ 1.

Then the series
∑∞

n=1 bn is convergent. The key point is
comparison with the convergent geometric series. Specifically, we
have

N+P∑
n=N

|bn| ≤ C
N+P∑
n=N

2−n ≤ C2−(N−1).

where C = 1 + 1010. Thus, given any ε > 0, there exists N such
that C2−(N−1) < ε, and the series is convergent.
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This is another variant of the Comparison Test:

Theorem (Comparison Test 3)

Let
∑∞

n=1 an be an absolutely convergent series and suppose that
there exists a positive integer N and a positive constant K for
which |bn| ≤ K |an| for n ≥ N. Then

∑∞
n=1 bn is also an absolutely

convergent series

Proof.

Given any ε >, choose a positive integer N so large that∑
n≥N
|an| <

ε

K
.

Then ∑
n≥N
|bn| < ε.
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Comparing series to geometric series

Theorem (Ratio Test 1)

Let (ak) be a sequence of non-zero numbers for which the ratio of
successive terms is convergent, i.e.

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r .

1 If r < 1, then
∑

ak is absolutely convergent.

2 If r > 1, then
∑

ak is divergent.

In other words, if the tail of the sequence ultimately looks like an
exponentially decreasing sequence, then the series is absolutely
convergent, but if the tail is ultimately exponentially increasing,
then the series is divergent.
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Proof.

1 For any R ∈ (r , 1), there exists N ∈ N for which

|ak+1| < R|ak |, for k ≥ N.

Hence for n ≥ N we have

n+p∑
k=n

|ak | <
(
1 + R + R2 + · · ·+ Rp−1)Rn−N |aN | ≤

Rn−N

1− R
|aN |

and the RHS tends to zero, as n→∞.

2 If r > 1, then for any R ∈ (1, r) there exists N ∈ N for which

|ak+1| ≥ R|ak |, for all k ≥ N.

Thus (ak) fails the Non-null test, since these increase
geometrically.
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We don’t actually need the ratios ak+1/ak to tend to a limit.

Theorem (Ratio test 2)

1 Let (ak) be a sequence of non-zero numbers for which the
ratio of successive terms satisfies∣∣∣∣ak+1

ak

∣∣∣∣ ≤ r < 1,

for all sufficiently large k ∈ N. Then
∑

ak is absolutely
convergent.

2 If r > 1 and there is a subsequence nk for which∣∣∣∣ank+1

ank

∣∣∣∣ ≥ r ,

for all k ∈ N, then
∑

ak is divergent.
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Proof.

1 Exercise: Modify the proof of Ratio Test 1 to prove this.

2 If there’s a subsequence whose absolute values grow
exponentially, then it cannot satisfy the Non-null Test, i.e. we
don’t have an → 0.
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Example (The Ratio Test only works for geometric-like series.)

We have already seen that the series

∞∑
k=0

1/k2

is convergent. Unfortunately, here the Ratio Test tells us nothing,
since, if ak = 1/k2, then

ak+1

ak
=

k2

(k + 1)2
=

1

(1 + 1/k)2
→ 1,

as k →∞. The Ratio Test is really just a simple way to test
whether a series is geometric-like, in the sense that the absolute
values of its terms are, at worst, exponentially decreasing. It can
tell us nothing about

∑
k−2, for which the terms only decrease

algebraically.
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Example (Exponential Taylor series is absolutely convergent)

We shall prove that the series

∞∑
n=0

xn

n!

is absolutely convergent for all x ∈ R. Indeed, setting an = xn/n!,
we have ∣∣∣∣an+1

an

∣∣∣∣ =
|x |

n + 1
→ 0,

as n→∞, so the series is absolutely convergent by the Ratio test.
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For a geometric progression an = rn, the n-th root is constant:

a
1/n
n = r . If the n-th root is approximately constant for all

sufficiently large n, then the series is almost a geometric series, as
we see in the next example.

Example

Let an = n (0.9)n, for n ≥ 0. Now n1/n → 1, as n→∞, which

implies a
1/n
n → 0.9. Hence there exists a positive integer N for

which a
1/n
n < 0.91 for all n ≥ N, which implies that an < 0.91n for

n ≥ N. Thus the series
∑

an is convergent, by comparison with
the geometric series

∑
0.91n.
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This can be generalized to any sequence for which a
1/n
n → r and

r ∈ (0, 1), and this is called the Root test:

Theorem

(The Root Test) Let an be any positive sequence for which

limn→∞ a
1/n
n = r . If r < 1, then

∑∞
n=1 an is convergent. However,

if r > 1, then the series is divergent.

Proof: Given any ε > 0, there exists a positive integer N for which∣∣∣a1/nn − r
∣∣∣ < ε, n ≥ N,

i.e.
r − ε < a

1/n
n < r + ε, n ≥ N.

Hence, if r < 1, then for any s ∈ (r , 1), there exists N such that

a
1/n
n < s, n ≥ N,

since we can choose any ε for which r + ε < s. But then we have

an < sn, ≥ N,

and the series is convergent, by the comparison principle.
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However, if r > 1, then for any s ∈ (1, r), there exists N for which

a
1/n
n > s, n ≥ N.

Hence an > sn, for n ≥ N, and this is increasing exponentially.
Thus the series is divergent.
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The Root Test is useful when a series is fairly “close” to a
geometric series, as the following example will show.
Exercise: Prove that

∑∞
n=1 n

22−n is convergent.
Exercise: We don’t need the n-th root to actually converge to
compare the series with a geometric series. You should not find it
too difficult to prove the following slightly stronger statements:

1 Suppose that there is a constant r ∈ (0, 1) such that a
1/n
n < r

for all sufficiently large n. Prove that
∑

an is convergent.

2 Suppose that there exists a constant r > 1 for which a
1/n
n > r

infinitely often, i.e. for infinitely many values of n. Prove that∑
an is divergent.
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Example (Root Test beats Ratio Test)

The Ratio Test is often easier to apply than the Root Test, but the
Root Test is more powerful. If we consider the convergent (Why?)
series

1 + 1 +
1

2
+

1

2
+

1

22
+

1

22
+ · · ·

i.e.

a2k =
1

2k
and a2k+1 =

1

2k
, k = 0, 1, 2, . . . ,

then
a2k+1

a2k
= 1, for k ≥ 0,

so the Ratio Test is inconclusive.

Exercise: Show that

lim
n→∞

a
1/n
n =

1

2
.
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Example

The exponential series

exp(x) =
∞∑
k=0

xk

k!

is absolutely convergent for all x ∈ R (or, indeed x ∈ C). Given
any x ∈ R, choose any r ∈ (0, 1). Then there exists a positive
integer N for which (|x |/N) < r . Hence, for any k ≥ N, we have

|x |k

k!
=

(
|x |N

N!

)(
|x |

N + 1

)
· · ·
(
|x |
k

)
<

(
|x |N

N!

)
rk−N .

Thus it’s absolutely convergent by comparison with a geometric
series.
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Theorem (The Alternating Series Test)

Let (ak) be a decreasing sequence of positive numbers that tends
to zero, i.e. a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0 and ak → 0, as k →∞. Then

∞∑
k=1

(−1)k−1ak

is convergent. Further, the partial sums

Sn =
n∑

k=1

(−1)k−1ak

satisfy |Sn − S | ≤ |an+1|, for all n ∈ N, where S = limn→∞ Sn.
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Proof.

First note that

S2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m),

and each bracketed term is positive, so (S2m) is an increasing
sequence. Further,

S2m = a1+(−a2+a3)+(−a4+a5) · · ·+(−a2m−2+a2m−1)−a2m < a1

because each bracketed term is negative. Thus (S2m) is a bounded
increasing sequence, and therefore convergent, with limit S say.
Now S2m+1 = S2m + a2m+1 and a2m+1 → 0, so limS2m+1 = S too.
Hence the series is convergent. The last part is an exercise.
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The Harmonic Series
The harmonic series is defined by

∞∑
n=1

1

n
,

and here is the fundamental result.

Theorem∑∞
n=1 1/n is divergent.

Exercise: Use the Alternating Series test to prove that

∞∑
n=1

(−1)n−1

n

is convergent. How quickly does it converge?
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Proof.

Let
Tk = {n ∈ Z+ : 2k−1 < n ≤ 2k},

for k = 1, 2, . . .. Thus T1 = {2}, T2 = {3, 4}, T3 = {5, 6, 7, 8},
etc. We see that the number of elements |Tk | = 2k−1. Further, if
n ∈ Tk , then n−1 ≥ 2−k . Hence∑

n∈Tk

n−1 ≥ |Tk |min{n−1 : n ∈ Tk} = 2k−12−k =
1

2
,

for every positive integer k. Therefore

2M∑
n=1

n−1 = 1 +
∑
n∈T1

n−1 +
∑
n∈T2

n−1 + · · ·
∑
n∈TM

n−1

≥ 1 +
M

2

and this is not bounded above, since M can be arbitrarily large.
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The harmonic series is divergent, but rather slowly so. Later, we
shall prove that

lim
n→∞

∑n
k=1 k

−1

log n
= 1.
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Example

Here is an entirely different proof of the divergence of the
harmonic series, this time proceeding by contradiction. Let

Sm =
m∑

n=1

n−1

and suppose Sm is bounded above for all m. In other words,
suppose that α = supm Sm exists and is finite, so that
limm→∞ Sm = α. There there exists a positive integer M for which
SM > α− 1/2, which implies

α > S4M = SM +
4M∑

n=M+1

n−1

> SM +
3M

4M
= SM +

3

4

> α− 1

2
+

3

4
= α +

1

4
.

In other words, the assumption that the harmonic series is
convergent, with limit α, has led to the contradiction α > α+ 1/4,
or 0 > 1/4!.
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The proof technique used to demonstrate the divergence of the
harmonic series can also be used to show the convergence of the
series

∞∑
n=1

n−2. (0.1)

Specifically, we define the partition T1,T2, . . . as above and note
that the upper bound n ∈ Tk implies n > 2k−1, whence
n−2 < 22−2k . Hence∑

n∈Tk

n−2 < 2k−122−2k = 21−k ,

and

2M∑
n=1

n−2 = 1 +
∑
n∈T1

n−2 +
∑
n∈T2

n−2 + · · ·
∑
n∈TM

n−2

< 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2M−1

< 3.
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This is a fairly rough and ready bound, but the key is that we have
shown that it is finite. An entirely different approach shows that

∞∑
n=1

n−2 =
π2

6
,

a result usually attributed to Euler.
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Non-examinable fun: Big-Oh and little-oh notation
The following notation often shortens comparison arguments
between terms of sequences and series.

Definition

Let (yn) be a sequence of positive numbers.

1 If there is a constant K for which the sequence (xn) satisfies
|xn| ≤ Kyn, for all n, then we write xn = O(yn), which we
state as “xn is big-Oh of yn”.

2 If limn→∞ xn/yn = 0, then we write xn = o(yn), which we
state as “xn is little-oh of yn”.

3 If limn→∞ xn/yn = 1, then we write xn ∼ yn, which we state
as “xn is asymptotically equal to yn”.
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As if so often the case, the best way to understand the power of
this new notation is via example.

Example

1 If xn = 7n2 − 300n + 1000, then xn = O(n2), xn ∼ 7n2 and
xn = o(n3); in fact, xn = o(nk) for any k > 2.

2 If yn = 1, for all n, then xn = O(yn) means that the sequence
(xn) is bounded. We usually just write xn = O(1). Similarly,
xn = o(1) means that xn → 0 as n→∞.

3 If xn = (n + 1)2 and yn = n2, then xn ∼ yn, but it is not true
that xn − yn → 0, since xn − yn = 2n + 1→∞.

4 Let

xn =
7n2 − 1000n + 105

nk
,

where k is a constant. Then xn = O(1/nk−2), so
∑

xn is
convergent for k > 3. Further, xn ∼ 7/nk−2, so

∑
xn diverges

if k ≤ 3.
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We have defined O, o and ∼ for sequences, but they are also
adaptable to functions, with very minor changes in formal
definition.

Example

1 As x →∞, x1000 = o(ex) and cos x = O(1).

2 As x → 0+ (i.e. tending to zero through positive values only),
x2 = o(x), x3 = o(x2), e−1/x = o(1), sin x = O(x) and
sin x ∼ x .

3 As x → 0, sin(1/x) = O(1) and 1− cos x ∼ x2/2.
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