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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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Riemann integration is studied in depth in Lecture 7.
BUT there is a simple Integral Test that relates series to integral of
functions for which you only need to know that decreasing and
increasing functions are Riemann integrable and have the following
simple property:

Theorem

If f1(x) ≥ f2(x) for x ∈ [a, b], then∫ b

a
f1(x) dx ≥

∫ b

a
f2(x) dx .

This lecture will enable you to complete Q7 on HW3.
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Theorem (Integral Test for series convergence)

Let f : [1,∞)→ (0,∞) be a positive decreasing function. Then

1
∞∑
n=1

f (n) and

∫ ∞
1

f (x) dx

either both diverge or both converge.

2 Let

an =
n∑

k=1

f (k)−
∫ n

1
f (x) dx , n ∈ N.

Then (an) is a decreasing sequence and 0 ≤ an ≤ f (1), so it’s
convergent with limit in [0, f (1)].
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Proof.

1 If k − 1 ≤ x ≤ k, then f (k − 1) ≥ f (x) ≥ f (k). Integrating
over (k − 1, k),

f (k − 1) ≥
∫ k

k−1
f (x) dx ≥ f (k).

Adding these inequalities

n−1∑
k=1

f (k) ≥
∫ n

1
f (x) dx ≥

n∑
k=2

f (k). (*)

Hence
∫∞
1 f and

∑∞
1 f (n) both converge or both diverge.

2 We have

an − an−1 = f (n)−
∫ n

n−1
f (x) dx ≤ 0

and 0 ≤ an ≤ f (1) by (*) (exercise).
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Example (
∑

n−3/2 convergent)

The series
∞∑
n=1

1

n3/2

is convergent if and only if the infinite integral∫ ∞
1

x−3/2 dx

exists. But∫ A

1
x−3/2 dx =

[
−2x−1/2

]A
1

= 2− 2

A1/2
→ 2,

as A→∞. Hence
∞∑
n=1

1

n3/2

is convergent.
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Example (Harmonic series
∑

1/n is divergent)

Let f (x) = 1/x . Here’s the Integral Test in detail (draw a picture!):

SN =
N∑

n=1

1

n
≥
∫ N+1

1

1

x
dx = ln(N + 1).

Since ln(N + 1)→∞ as N →∞, the partial sums (SN) are
unbounded. Hence the harmonic series is divergent.

Logarithms: Here we are using

ln y =

∫ y

1

1

x
dx , for y > 0,

which we shall discuss in Lecture 7.
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Example (
∑

1/nc is divergent for 0 < c < 1)

Here’s the Integral Test in detail again (draw a picture!):

SN =
N∑

k=1

1

nc
≥
∫ N+1

1
x−c dx =

[
x1−c

1− c

]N+1

1

=
(N + 1)1−c − 1

1− c
.

But, if c < 1, then 1− c > 0 and (N + 1)1−c →∞ as N →∞.
Thus the partial sums (SN) are unbounded and the series is
divergent.
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Example (
∑

1/nc is convergent for c > 1)

Here’s the Integral Test in detail again (draw a picture!):

N∑
k=2

1

nc
≤
∫ N

1
x−c dx =

[
x1−c

1− c

]N
1

=
N1−c − 1

1− c
.

But, if c > 1, then 1− c < 0 and N1−c → 0 as N →∞. Thus the
partial sums (SN) are bounded and the series is convergent.
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Theorem (Euler’s constant)

Let

an = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n.

Then an → γ, where 0 < γ < 1.

Proof.

Apply the Integral Test to f (x) = 1/x .
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