Real Analysis 4: Continuity

Brad Baxter Birkbeck College, University of London

May 18, 2023

 \sim \sim

4 重

э

つくへ

Brad Baxter Birkbeck College, University of London [Real Analysis 4: Continuity](#page-25-0)

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

 Ω

Example (A once pathological function)

Consider the following function

$$
f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & x \in \mathbb{Q}. \end{cases}
$$

In any interval (a, b) ,

 $\sup\{f(x): a < x < b\} = 1$ and $\inf\{f(x): a < x < b\} = 0$.

What would the graph of $f(x)$ look like? What, if anything, is

$$
\int_0^1 f(x) \, dx?
$$

Such functions were disturbing in the earlier days of analysis, hence the term "pathological". Continuity is one way to avoid them.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

 200

 $\ddot{}$

A continuous function has no "jumps".

Definition

- We say $f : [a, b] \rightarrow \mathbb{R}$ is continuous at $c \in (a, b)$ if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.
- **2** We say that f is continuous at a if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $x \in (a, a + \delta)$ implies $|f(x) - f(a)| < \epsilon$.
- \bullet We say that f is continuous at b if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $x \in (b - \delta, b)$ implies $|f(x) - f(b)| < \epsilon$.

伊 ▶ イヨ ▶ イヨ ▶

つくい

Sequence definition of continuity: If $x_n \to c$, then $f(x_n) \to f(c)$.

Example $(x^2$ is continuous)

 $f(x) = x^2$ is continuous on $\mathbb R$, i.e. continuous at every point $c \in \mathbb{R}$. To see this, first note that

$$
f(c+h) - f(c) = (c+h)^2 - c^2 = 2ch + h^2,
$$

and we want to prove that this is small for sufficiently small $|h|$. If we choose any $R \in (0,1)$, then $|h| \le R$ implies

$$
|f(c+h)-f(c)|=|2ch+h^2|\leq 2|c|R+R^2\leq (2|c|+1)R,
$$

since $R^2 < R$ for $R \in (0,1)$. Thus, given any $\epsilon > 0$, if we pick $\delta < \epsilon / (2|\mathcal{C}| + 1)$, then $|h| < \delta$ implies that

$$
|f(c+h)-f(c)|\leq (2|c|+1)\delta<\epsilon.
$$

Example (x^n) is continuous)

We could mimic the proof of continuity of x^2 to prove that $f(x) = x^n$ is continuous. The crucial point is that, for $|h| < 1$,

$$
|f(c+h)-f(c)| \leq \sum_{k=1}^n {n \choose k} |h|^k |c|^{n-k}
$$

$$
\leq |h| \sum_{k=1}^n {n \choose k} |c|^{n-k}.
$$

つくい

Exercise: Complete the proof.

Brad Baxter Birkbeck College, University of London [Real Analysis 4: Continuity](#page-0-0)

Example (A discontinuous function)

Let

$$
f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & x \in \mathbb{Q}. \end{cases}
$$

Then in every open interval (a, b) we have

 $\sup\{f(x): a < x < b\} = 1$ and $\inf\{f(x): a < x < b\} = 0$.

化重新润滑脂

 200

Hence f is nowhere continuous.

Theorem (Sums of continous functions are continuous.)

If f_1 and f_2 are continuous functions on [a, b], then so is $g = f_1 + f_2$.

Proof.

We have

$$
|g(x)-g(c)|=|(f_1(x)-f_1(c))+(f_2(x)-f_2(c))|\leq |f_1(x)-f_1(c)|+|f_2(x)-f_2(c)|.
$$

Now choose any $\epsilon > 0$. By continuity of f_1 and f_2 , we know that there exists $\delta_k > 0$ such that $|x - c| < \delta_k$ implies $|f_k(x) - f_k(c)| < \epsilon/2$. Hence, if $|x - c| < \delta := \min\{\delta_1, \delta_2\}$, then

$$
|g(x) - g(c)| = |(f_1(x) - f_1(c)) + (f_2(x) - f_2(c))|
$$

\n
$$
\leq |f_1(x) - f_1(c)| + |f_2(x) - f_2(c)|
$$

\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Theorem (Products of continous functions are continuous.)

If f_1 and f_2 are continuous functions on [a, b], then so is $g(x) = f_1(x) f_2(x)$, for $x \in [a, b]$.

Proof.

Given any $\epsilon > 0$, there exists $\delta_k > 0$ such that $|x - c| < \delta_k$ implies $|f_k(x) - f_k(c)| < \epsilon$. Hence if $\delta = \min\{\delta_1, \delta_2\}$, then $|x - c| < \delta$ implies $|f_k(x) - f_k(c)| < \epsilon$ and $|f_k(x)| < |f_k(c)| + \epsilon$ for $|x - c| < \delta$. Therefore

$$
|f_1(x)f_2(x) - f_1(c)f_2(c)|
$$

= |f_1(x)f_2(x) - f_1(c)f_2(x) + f_1(c)f_2(x) - f_1(c)f_2(c)|

$$
\leq |f_1(x)f_2(x) - f_1(c)f_2(x)| + |f_1(c)f_2(x) - f_1(c)f_2(c)|
$$

= |f_2(x)| |f_1(x) - f_1(c)| + |f_1(c)| |f_1(x) - f_1(x)|
< (|f_2(c)| + \epsilon) \epsilon + |f_1(c)| \epsilon.

Lemma

Let f : [a, b] $\rightarrow \mathbb{R}$ be continuous and suppose that $f(c) > 0$ for some point $a < c < b$. Then exists an open $(c - \delta, c + \delta) \subset [a, b]$ such that $f(x) > f(c)/2$ for $|x - c| < \delta$.

Proof.

Let $\epsilon = f(c)/2$. By continuity, there exists an an open interval $(c - \delta, c + \delta)$ in which

$$
|f(x)-f(c)|<\epsilon=\frac{f(c)}{2}.
$$

In other words,

$$
-\frac{f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2},
$$

which implies that $\frac{f(c)}{2} < f(x) < \frac{3}{2}$ $\frac{3}{2}f(c)$, for $x \in (c - \delta, c + \delta)$. \Box

Optional extra proof of Bolzano–Weierstrass

Recall that a real sequence (a_n) is just a function $f: \mathbb{N} \to \mathbb{R}$, i.e. $a_n = f(n)$.

Definition

We shall call $m \in \mathbb{N}$ a peak number if $a_m > a_k$ for all $k > m$.

Theorem (Bolzano–Weierstrass with a different proof)

Any bounded sequence (a_n) of real numbers contains a monotonic, and therefore convergent, subsequence.

Optional extra proof of Bolzano–Weierstrass

Bolzano–Weierstrass via hidden monotonic sequences.

Either: there are infinitely many peak numbers $p(1) < p(2) < p(3) < \cdots$, then $a_{p(k)} \ge a_{p(k+1)}$, i.e. $a_{p(1)}, a_{p(2)}, \ldots$ is a bounded decreasing subsequence.

Or: there are only finitely many peak numbers. Let M be the greatest peak number. For every $n > M$, n is not a peak number, so there must exist a least $g(n) > n$ with $a_{g(n)} > a_n$.

押 ▶ イヨ ▶ イヨ ▶ │

 200

Define $q(1) = M + 1$ and $q(k+1) = g(q(k))$. Then $\mathit{q}(k) < \mathit{q}(k+1)$ and $\mathit{a}_{\mathit{q}(k)} < \mathit{a}_{\mathit{q}(k+1)}$ for all k , so $(\mathit{a}_{\mathit{q}(k)})$ is a bounded increasing subsequence.

Finally, a bounded monotonic subsequence is convergent.

Lemma (Continuous functions are locally bounded)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function and choose any point $c \in (a, b)$ for which $f(c) \neq 0$. Then exists an open interval $(c - \delta, c + \delta) \subset [a, b]$ such that

 $|f(x)| < 2 |f(c)|$,

for $|x - c| < \delta$.

Proof.

By continuity, there exists an open interval $(c - \delta, c + \delta)$ in which

$$
|f(x)-f(c)|<|f(c)|.
$$

In other words,

$$
-|f(c)| < f(x) - f(c) < |f(c)|,
$$

which implies $|f(x)| < 2|f(c)|$.

Theorem

Let f : [a, b] $\rightarrow \mathbb{R}$ be any unbounded function. Then f is not continuous everywhere in $[a, b]$, i.e. there exists a point at which f is discontinuous.

Proof.

Without loss of generality, f is not bounded above. Thus there exists a sequence (x_n) for which $f(x_n) > n$. By Bolzano–Weierstrass, there is a convergent subsequence (x_{n_k}) , with limit $c \in [a, b]$. Thus, given any $\delta > 0$, there exists $N \in \mathbb{N}$ for which $|x_{n_k} - c| < \delta$, for $n_k \geq N$, and $f(x_{n_k}) > |f(c)|$. Hence, using the Triangle Inequality $|A - B| \geq ||A| - |B|\Big|$,

$$
|f(x_{n_k}) - f(c)| \ge | |f(x_{n_k})| - |f(c)| | > n_k - |f(c)|.
$$

Thus f is not continuous at c .

Hence a continuous function on $[a, b]$ is bounded. Exercise: Is the theorem true in (a, b) ?

Brad Baxter Birkbeck College, University of London [Real Analysis 4: Continuity](#page-0-0)

Theorem (Intermediate Value Theorem 1)

If f : [a, b] $\rightarrow \mathbb{R}$ is continuous and $f(a) < f(b)$, then, for every $y \in (f(a), f(b))$, there exists at least one point $c \in (a, b)$ for which $f(c) = y$.

Proof.

Let

$$
S = \{x \in [a, b] : f(x) < y\}.
$$

Then $a \in S$, so it's non-empty and contained in the bounded interval [a, b]. Hence $c = \sup S$ exists. If $f(c) > y$, then there exists $\delta > 0$ such that $f(x) > y$ for $|x - c| < \delta$. However, if this is so, then $c - \delta$ is an upper bound for S, contradicting the definition of c. Similarly, if $f(c) < y$, then there exists $\delta > 0$ such that $f(x) < y$ for $|x - c| \le \delta$, again contradicting the definition of c. The only remaining possibility is $f(y) = c$.

メ 君 ドメ 君 ドッ

 200

Exercise: What happens if $f(a) > f(b)$? Hint: Consider $-f$.

Theorem

(IVT2) If f : [a, b] $\rightarrow \mathbb{R}$ is continuous and $f(a) > 0 > f(b)$, then there exists at least one point $c \in (a, b)$ for which $f(c) = 0$.

CONSTRUCTIVE PROOF:

Let $a_0 = a$, $b_0 = b$ and let $L = b_0 - a_0$. Thus $f(a_0) > 0 > f(b_0)$ and our interval $[a_0, b_0]$ has length L. **Either** $f\left(\frac{a_0+b_0}{2}\right)=0$, in which case **STOP** or $f(\frac{a_0+b_0}{2})\neq 0$. **If** $f(\frac{a_0+b_0}{2}) > 0$, then let $a_1 = (a_0 + b_0)/2$, $b_1 = b_0$, **else** let $a_1 = a_0$, $b_1 = (a_0 + b_0)/2$. We now have a new interval $[a_1, b_1]$ of length $L/2$ for which $f(a_1) > 0 > f(b_1)$. We can then repeat the construction, each time obtaining an interval $[a_k,b_k]$ of length $L/2^k$ for which $f(a_k) > 0 > f(b_k)$.

イ何 トイヨ トイヨ トー

 200

Specifically, at the k-th stage of our algorithm, for $k \geq 1$, we repeat this procedure:

Either
$$
f(\frac{a_k+b_k}{2}) = 0
$$
, in which case **STOP**
\n**or** $f(\frac{a_k+b_k}{2}) \neq 0$.
\n**If** $f(\frac{a_k+b_k}{2}) > 0$, then let $a_{k+1} = (a_k + b_k)/2$, $b_{k+1} = b_k$,
\n**else** let $a_{k+1} = a_k$, $b_{k+1} = (a_k + b_k)/2$.

 2990

∍

化重新润滑脂

To conclude, we have generated two sequences a_0, a_1, \ldots and b_0, b_1, \ldots with the following properties:

- \bigcirc $\{a_k\}$ is an increasing sequence,
- $\{b_k\}$ is a decreasing sequence,
- **3** each a_k is bounded above by b_1, b_2, \ldots
- \bullet each b_ℓ is bounded below by a_1, a_2, \ldots and

$$
b_k-a_k=L/2^k.
$$

Since bounded monotonic sequences are convergent, we deduce the existence of $\alpha = \lim_{k \to \infty} a_k$ and $\beta = \lim_{k \to \infty} b_k$. Further $\alpha \leq \beta$, $f(\alpha) \geq 0 \geq f(\beta)$ and $[\alpha, \beta] \subset [\mathsf{a}_k, \mathsf{b}_k]$, for every integer k (Why?). Hence $\beta - \alpha \le L/2^k$, for every k, which implies $\alpha = \beta$. We then conclude that $f(\alpha) > 0$ and $f(\alpha) < 0$, since α is the limit of the ${a_k}$ and the ${b_k}$, which implies that $f(\alpha) = 0$. Thus $c = \alpha$ is our desired root.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

 200

Example

A continuous function can have arbitrarily many roots in a closed interval: consider $a = 0$, $b = \pi$, $f(x) = \cos nx$, where *n* is an odd positive integer.

Exercise

Give an example of a continuous function with infinitely many roots in $(0, 1]$. Hint: First find an example of a continuous function with infinitely many roots in $[1,\infty)$.

 200

The next result will again use a bisection argument. I shall use the notation

$$
\sup_I f = \sup\{f(x) : x \in I\},\
$$

and

$$
\inf_I f = \inf\{f(x) : x \in I\},\
$$

for any interval I.

Key point: At least one of $\mathsf{sup}_{[a,(a+b)/2]}f$ and $\mathsf{sup}_{[(a+b)/2,b]}f$ must be equal to $\sup_{[a,b]}f.$ The proof that $\inf_I f$ is attained is essentially identical.

Theorem

If f : $[a, b] \rightarrow \mathbb{R}$ is a continuous function, then f attains its bounds.

CONSTRUCTIVE PROOF:

We begin the bisection argument as before: **If** $\sup_{[a_0,(a_0+b_0)/2]}f=\sup_{[a_0,b_0]}f$, or if

$$
\sup_{[a_0,(a_0+b_0)/2]}f=\sup_{[(a_0+b_0)/2,b_0]}f,
$$

→ < 手 → < 手 → →

 200

then let $a_1 = a_0$, $b_1 = (a_0 + b_0)/2$, else let $a_1 = (a_0 + b_0)/2$, $b_1 = b_0$. We now have a new interval $[a_1, b_1]$ of length $L/2$ for which $\sup_{[a_1,b_1]} f = \sup_{[a_0,b_0]} f$.

As in the bisection proof of the Intermediate Value Theorem, we now repeat the construction, each time obtaining an interval $[a_k, b_k]$ of length $L/2^k$ on which $\sup_{[a_k, b_k]} f = \sup_{[a_0, b_0]} f$. To conclude, we have generated two sequences a_0, a_1, \ldots and b_0, b_1, \ldots with the following properties:

- \bigcirc $\{a_k\}$ is an increasing sequence,
- $\{b_k\}$ is a decreasing sequence,
- **3** each a_k is bounded above by b_1, b_2, \ldots
- $\bullet\hspace{0.1cm}$ each b_ℓ is bounded below by a_1, a_2, \ldots and

$$
b_k-a_k=L/2^k.
$$

Since bounded monotonic sequences are convergent, we deduce the existence of $\alpha = \lim_{k \to \infty} a_k$ and $\beta = \lim_{k \to \infty} b_k$. Further $\alpha < \beta$, $f(\alpha) \ge 0 \ge f(\beta)$ and $[\alpha, \beta] \subset [a_k, b_k]$, for every integer k (Why?). Hence $\beta - \alpha \leq L/2^k$, for every k, which implies $\alpha = \beta$. Thus $\sup_{[a_k, b_k]} f = \sup_{[a,b]} f$, $b_k - a_k = L/2^k$ and $\alpha \in [a_k, b_k]$, for all k. However, f is continuous at α . Hence, given any $\epsilon > 0$, there exists $\delta > 0$ such that $|x - \alpha| \leq \delta$ implies $|f(x) - f(\alpha)| \leq \epsilon$. Finally, $[a_k, b_k] \subset [\alpha - \delta, \alpha + \delta]$, for all sufficiently large k, which implies that $f(\alpha)=\mathsf{sup}_{[a,b]} \, f$.

Example (Non-uniformly continuous function)

Consider the function $f(x) = 1/x$ for $0 < x \le 1$. Then

$$
\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy}.
$$

If $0 < r < 1$ and we let $x = r$, $y = 2r$, then

$$
\frac{1}{x} - \frac{1}{y} = \frac{1}{2r}
$$

 200

which tends to infinity as $r \to 0$.

Definition (Uniform continuity)

Let $f: E \to \mathbb{R}$, where $E \subset \mathbb{R}$. We say that f is uniformly **continuous** on E iff, for any $\epsilon > 0$, there exists $\delta > 0$ for which

$$
|x-y|<\delta \quad \text{ implies }\quad |f(x)-f(y)|<\epsilon
$$

for all $x, y \in E$.

In symbols (\forall = "for all", \exists = 'there exists"), uniform continuity requires

$$
\forall \epsilon \; \exists \delta > 0 \; \forall x, y \in E: \; |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.
$$

Compare this with continuity:

 $\forall x \in E \ \forall \epsilon \ \exists \delta > 0 \ \forall y \in E : \ |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$

Key difference: δ only depends on ϵ for uniform continuity, while it's a function of both ϵ and x for continuity.

 $(1 + \epsilon)$, $(1 + \epsilon)$, $(1 + \epsilon)$

 200

Theorem

If f : $[a, b] \rightarrow \mathbb{R}$ is not uniformly continuous, then it's discontinuous at some point in $[a, b]$

Proof.

If f were NOT uniformly continuous, then

 $\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in [a, b] : |x - y| < \delta \ \text{AND} \ |f(x) - f(y)| > \epsilon.$

In other words, there exists $\epsilon > 0$ and two sequences (x_n) and (y_n) in $[a, b]$ for which

$$
|f(x_n)-f(y_n)|>\epsilon \text{ AND } |x_n-y_n|<\frac{1}{n}.
$$

By Bolzano–Weierstrass, these sequences have convergent subsequences (x_{n_k}) and (y_{n_k}) with a common limit $c \in [a,b]$ (Why?). Hence f is not continuous at c , since

$$
0 < \epsilon < |f(x_{n_k}) - f(y_{n_k})| \leq |f(x_{n_k}) - f(c)| + |f(c) - f(y_{n_k})|.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 4: Continuity](#page-0-0)