Real Analysis 4: Continuity

Brad Baxter Birkbeck College, University of London

May 18, 2023

Brad Baxter Birkbeck College, University of London Real Analysis 4: Continuity

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), "How to Think about Analysis", Oxford University Press.

Example (A once pathological function)

Consider the following function

$$f(x) = egin{cases} 1 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q} \ 0 & x \in \mathbb{Q}. \end{cases}$$

In any interval (a, b),

 $\sup\{f(x) : a < x < b\} = 1$ and $\inf\{f(x) : a < x < b\} = 0$.

What would the graph of f(x) look like? What, if anything, is

$$\int_0^1 f(x) \, dx?$$

Such functions were disturbing in the earlier days of analysis, hence the term "pathological". Continuity is one way to avoid them.

A continuous function has no "jumps".

Definition

- We say $f : [a, b] \to \mathbb{R}$ is continuous at $c \in (a, b)$ if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $|x c| < \delta$ implies $|f(x) f(c)| < \epsilon$.
- **2** We say that f is continuous at a if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $x \in (a, a + \delta)$ implies $|f(x) f(a)| < \epsilon$.
- We say that f is continuous at b if, given any $\epsilon > 0$, there exists $\delta > 0$ such that $x \in (b \delta, b)$ implies $|f(x) f(b)| < \epsilon$.

Sequence definition of continuity: If $x_n \to c$, then $f(x_n) \to f(c)$.

Example (x^2 is continuous)

 $f(x) = x^2$ is continuous on \mathbb{R} , i.e. continuous at every point $c \in \mathbb{R}$. To see this, first note that

$$f(c+h) - f(c) = (c+h)^2 - c^2 = 2ch + h^2$$
,

and we want to prove that this is small for sufficiently small |h|. If we choose any $R \in (0, 1)$, then $|h| \le R$ implies

$$|f(c+h) - f(c)| = |2ch + h^2| \le 2|c|R + R^2 \le (2|c|+1)R,$$

since $R^2 < R$ for $R \in (0, 1)$. Thus, given any $\epsilon > 0$, if we pick $\delta < \epsilon / (2|c|+1)$, then $|h| < \delta$ implies that

$$|f(c+h)-f(c)|\leq (2|c|+1)\,\delta<\epsilon.$$

Example (x^n is continuous)

We could mimic the proof of continuity of x^2 to prove that $f(x) = x^n$ is continuous. The crucial point is that, for |h| < 1,

$$egin{aligned} |f(c+h)-f(c)|&\leq \sum_{k=1}^n \binom{n}{k} |h|^k |c|^{n-k}\ &\leq |h|\sum_{k=1}^n \binom{n}{k} |c|^{n-k}. \end{aligned}$$

Exercise: Complete the proof.

Example (A discontinuous function)

Let

$$f(x) = egin{cases} 1 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q} \ 0 & x \in \mathbb{Q}. \end{cases}$$

Then in every open interval (a, b) we have

 $\sup\{f(x) : a < x < b\} = 1$ and $\inf\{f(x) : a < x < b\} = 0$.

Hence f is nowhere continuous.

Theorem (Sums of continous functions are continuous.)

If f_1 and f_2 are continuous functions on [a, b], then so is $g = f_1 + f_2$.

Proof.

We have

$$egin{aligned} |g(x)-g(c)| &= |(f_1(x)-f_1(c))+(f_2(x)-f_2(c))| \ &\leq |f_1(x)-f_1(c)|+|f_2(x)-f_2(c)|\,. \end{aligned}$$

Now choose any $\epsilon > 0$. By continuity of f_1 and f_2 , we know that there exists $\delta_k > 0$ such that $|x - c| < \delta_k$ implies $|f_k(x) - f_k(c)| < \epsilon/2$. Hence, if $|x - c| < \delta := \min\{\delta_1, \delta_2\}$, then

$$egin{aligned} |g(x)-g(c)| &= |(f_1(x)-f_1(c))+(f_2(x)-f_2(c))| \ &\leq |f_1(x)-f_1(c)|+|f_2(x)-f_2(c)| \ &< rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon. \end{aligned}$$

Theorem (Products of continous functions are continuous.)

If f_1 and f_2 are continuous functions on [a, b], then so is $g(x) = f_1(x)f_2(x)$, for $x \in [a, b]$.

Proof.

Given any $\epsilon > 0$, there exists $\delta_k > 0$ such that $|x - c| < \delta_k$ implies $|f_k(x) - f_k(c)| < \epsilon$. Hence if $\delta = \min\{\delta_1, \delta_2\}$, then $|x - c| < \delta$ implies $|f_k(x) - f_k(c)| < \epsilon$ and $|f_k(x)| < |f_k(c)| + \epsilon$ for $|x - c| < \delta$. Therefore

$$\begin{split} |f_1(x)f_2(x) - f_1(c)f_2(c)| \\ &= |f_1(x)f_2(x) - f_1(c)f_2(x) + f_1(c)f_2(x) - f_1(c)f_2(c)| \\ &\leq |f_1(x)f_2(x) - f_1(c)f_2(x)| + |f_1(c)f_2(x) - f_1(c)f_2(c)| \\ &= |f_2(x)| |f_1(x) - f_1(c)| + |f_1(c)| |f_1(x) - f_1(x)| \\ &< (|f_2(c)| + \epsilon) \epsilon + |f_1(c)| \epsilon. \end{split}$$

Lemma

Let $f : [a, b] \to \mathbb{R}$ be continuous and suppose that f(c) > 0 for some point a < c < b. Then exists an open $(c - \delta, c + \delta) \subset [a, b]$ such that f(x) > f(c)/2 for $|x - c| < \delta$.

Proof.

Let $\epsilon = f(c)/2$. By continuity, there exists an an open interval $(c - \delta, c + \delta)$ in which

$$|f(x)-f(c)|<\epsilon=rac{f(c)}{2}.$$

In other words,

$$-\frac{f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2},$$

which implies that $\frac{f(c)}{2} < f(x) < \frac{3}{2}f(c)$, for $x \in (c - \delta, c + \delta)$.

Optional extra proof of Bolzano-Weierstrass

Recall that a real sequence (a_n) is just a function $f : \mathbb{N} \to \mathbb{R}$, i.e. $a_n = f(n)$.

Definition

We shall call $m \in \mathbb{N}$ a **peak number** if $a_m \ge a_k$ for all $k \ge m$.

Theorem (Bolzano–Weierstrass with a different proof)

Any bounded sequence (a_n) of real numbers contains a monotonic, and therefore convergent, subsequence.

Optional extra proof of Bolzano-Weierstrass

Bolzano-Weierstrass via hidden monotonic sequences.

Either: there are infinitely many peak numbers $p(1) < p(2) < p(3) < \cdots$, then $a_{p(k)} \ge a_{p(k+1)}$, i.e. $a_{p(1)}, a_{p(2)}, \ldots$ is a bounded decreasing subsequence.

Or: there are only finitely many peak numbers. Let M be the greatest peak number. For every n > M, n is not a peak number, so there must exist a least g(n) > n with $a_{g(n)} > a_n$.

Define q(1) = M + 1 and q(k + 1) = g(q(k)). Then q(k) < q(k + 1) and $a_{q(k)} < a_{q(k+1)}$ for all k, so $(a_{q(k)})$ is a bounded increasing subsequence.

Finally, a bounded monotonic subsequence is convergent.

Lemma (Continuous functions are locally bounded)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function and choose any point $c \in (a, b)$ for which $f(c) \neq 0$. Then exists an open interval $(c - \delta, c + \delta) \subset [a, b]$ such that

 $|f(x)| \leq 2|f(c)|,$

for $|x - c| < \delta$.

Proof.

By continuity, there exists an open interval $(c - \delta, c + \delta)$ in which

$$|f(x) - f(c)| < |f(c)|.$$

In other words,

$$-|f(c)| < f(x) - f(c) < |f(c)|,$$

which implies |f(x)| < 2|f(c)|.

Theorem

Let $f: [a, b] \to \mathbb{R}$ be any unbounded function. Then f is not continuous everywhere in [a, b], i.e. there exists a point at which f is discontinuous.

Proof.

Without loss of generality, f is not bounded above. Thus there exists a sequence (x_n) for which $f(x_n) > n$. By Bolzano–Weierstrass, there is a convergent subsequence (x_{n_k}) , with limit $c \in [a, b]$. Thus, given any $\delta > 0$, there exists $N \in \mathbb{N}$ for which $|x_{n_k} - c| < \delta$, for $n_k \ge N$, and $f(x_{n_k}) > |f(c)|$. Hence, using the Triangle Inequality $|A - B| \ge ||A| - |B||$,

$$|f(x_{n_k}) - f(c)| \ge ||f(x_{n_k})| - |f(c)|| > n_k - |f(c)|.$$

Thus f is not continuous at c.

Hence a continuous function on [a, b] is bounded. Exercise: Is the theorem true in (a, b)?

Brad Baxter Birkbeck College, University of London

Real Analysis 4: Continuity

Theorem (Intermediate Value Theorem 1)

If $f : [a, b] \to \mathbb{R}$ is continuous and f(a) < f(b), then, for every $y \in (f(a), f(b))$, there exists at least one point $c \in (a, b)$ for which f(c) = y.

Proof.

Let

$$S = \{x \in [a, b] : f(x) < y\}.$$

Then $a \in S$, so it's non-empty and contained in the bounded interval [a, b]. Hence $c = \sup S$ exists. If f(c) > y, then there exists $\delta > 0$ such that f(x) > y for $|x - c| \le \delta$. However, if this is so, then $c - \delta$ is an upper bound for S, contradicting the definition of c. Similarly, if f(c) < y, then there exists $\delta > 0$ such that f(x) < y for $|x - c| \le \delta$, again contradicting the definition of c. The only remaining possibility is f(y) = c.

* 注 * * 注 * …

Exercise: What happens if f(a) > f(b)? **Hint**: Consider -f.

Theorem

(IVT2) If $f : [a, b] \to \mathbb{R}$ is continuous and f(a) > 0 > f(b), then there exists at least one point $c \in (a, b)$ for which f(c) = 0.

CONSTRUCTIVE PROOF:

Let $a_0 = a$, $b_0 = b$ and let $L = b_0 - a_0$. Thus $f(a_0) > 0 > f(b_0)$ and our interval $[a_0, b_0]$ has length L. **Either** $f(\frac{a_0+b_0}{2}) = 0$, in which case **STOP** or $f(\frac{a_0+b_0}{2}) \neq 0$. If $f(\frac{a_0+b_0}{2}) > 0$, then let $a_1 = (a_0 + b_0)/2$, $b_1 = b_0$, else let $a_1 = a_0$, $b_1 = (a_0 + b_0)/2$. We now have a new interval $[a_1, b_1]$ of length L/2 for which $f(a_1) > 0 > f(b_1)$. We can then repeat the construction, each time obtaining an interval $[a_k, b_k]$ of length $L/2^k$ for which $f(a_k) > 0 > f(b_k)$.

伺 ト イ ヨ ト イ ヨ ト

Specifically, at the k-th stage of our algorithm, for $k \ge 1$, we repeat this procedure:

Either
$$f(\frac{a_k+b_k}{2}) = 0$$
, in which case **STOP**
or $f(\frac{a_k+b_k}{2}) \neq 0$.
If $f(\frac{a_k+b_k}{2}) > 0$, then let $a_{k+1} = (a_k + b_k)/2$, $b_{k+1} = b_k$,
else let $a_{k+1} = a_k$, $b_{k+1} = (a_k + b_k)/2$.

To conclude, we have generated two sequences a_0, a_1, \ldots and b_0, b_1, \ldots with the following properties:

- $\{a_k\}$ is an increasing sequence,
- **2** $\{b_k\}$ is a decreasing sequence,
- each a_k is bounded above by b_1, b_2, \ldots ,
- each b_ℓ is bounded below by a_1, a_2, \ldots , and

$$b_k - a_k = L/2^k.$$

Since bounded monotonic sequences are convergent, we deduce the existence of $\alpha = \lim_{k\to\infty} a_k$ and $\beta = \lim_{k\to\infty} b_k$. Further $\alpha \leq \beta, f(\alpha) \geq 0 \geq f(\beta)$ and $[\alpha, \beta] \subset [a_k, b_k]$, for every integer k(Why?). Hence $\beta - \alpha \leq L/2^k$, for every k, which implies $\alpha = \beta$. We then conclude that $f(\alpha) \geq 0$ and $f(\alpha) \leq 0$, since α is the limit of the $\{a_k\}$ and the $\{b_k\}$, which implies that $f(\alpha) = 0$. Thus $c = \alpha$ is our desired root. \Box

Example

A continuous function can have arbitrarily many roots in a closed interval: consider a = 0, $b = \pi$, $f(x) = \cos nx$, where *n* is an odd positive integer.

Exercise

Give an example of a continuous function with infinitely many roots in (0, 1]. **Hint:** First find an example of a continuous function with infinitely many roots in $[1, \infty)$.

The next result will again use a bisection argument. I shall use the notation

$$\sup_{I} f = \sup\{f(x) : x \in I\},\$$

and

$$\inf_{I} f = \inf\{f(x) : x \in I\},\$$

for any interval *I*.

Key point: At least one of $\sup_{[a,(a+b)/2]} f$ and $\sup_{[(a+b)/2,b]} f$ must be equal to $\sup_{[a,b]} f$. The proof that $\inf_{I} f$ is attained is essentially identical.

Theorem

If $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function, then f attains its bounds.

CONSTRUCTIVE PROOF:

We begin the bisection argument as before: If $\sup_{[a_0,(a_0+b_0)/2]} f = \sup_{[a_0,b_0]} f$, or if

$$\sup_{[a_0,(a_0+b_0)/2]} f = \sup_{[(a_0+b_0)/2,b_0]} f,$$

then let $a_1 = a_0$, $b_1 = (a_0 + b_0)/2$, else let $a_1 = (a_0 + b_0)/2$, $b_1 = b_0$. We now have a new interval $[a_1, b_1]$ of length L/2 for which $\sup_{[a_1, b_1]} f = \sup_{[a_0, b_0]} f$. As in the bisection proof of the Intermediate Value Theorem, we now repeat the construction, each time obtaining an interval $[a_k, b_k]$ of length $L/2^k$ on which $\sup_{[a_k, b_k]} f = \sup_{[a_0, b_0]} f$. To conclude, we have generated two sequences a_0, a_1, \ldots and b_0, b_1, \ldots with the following properties:

- $\{a_k\}$ is an increasing sequence,
- 2 $\{b_k\}$ is a decreasing sequence,
- each a_k is bounded above by b_1, b_2, \ldots ,
- each b_{ℓ} is bounded below by a_1, a_2, \ldots , and

$$\bullet \ b_k - a_k = L/2^k.$$

Since bounded monotonic sequences are convergent, we deduce the existence of $\alpha = \lim_{k\to\infty} a_k$ and $\beta = \lim_{k\to\infty} b_k$. Further $\alpha \leq \beta, f(\alpha) \geq 0 \geq f(\beta)$ and $[\alpha, \beta] \subset [a_k, b_k]$, for every integer k(Why?). Hence $\beta - \alpha \leq L/2^k$, for every k, which implies $\alpha = \beta$. Thus $\sup_{[a_k, b_k]} f = \sup_{[a, b]} f$, $b_k - a_k = L/2^k$ and $\alpha \in [a_k, b_k]$, for all k. However, f is continuous at α . Hence, given any $\epsilon > 0$, there exists $\delta > 0$ such that $|x - \alpha| \leq \delta$ implies $|f(x) - f(\alpha)| \leq \epsilon$. Finally, $[a_k, b_k] \subset [\alpha - \delta, \alpha + \delta]$, for all sufficiently large k, which implies that $f(\alpha) = \sup_{[a,b]} f$. \Box

Example (Non-uniformly continuous function)

Consider the function f(x) = 1/x for $0 < x \le 1$. Then

$$\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy}.$$

If 0 < r < 1 and we let x = r, y = 2r, then

$$\frac{1}{x} - \frac{1}{y} = \frac{1}{2r}$$

which tends to infinity as $r \rightarrow 0$.

Definition (Uniform continuity)

Let $f: E \to \mathbb{R}$, where $E \subset \mathbb{R}$. We say that f is **uniformly** continuous on E iff, for any $\epsilon > 0$, there exists $\delta > 0$ for which

$$|x - y| < \delta$$
 implies $|f(x) - f(y)| < \epsilon$

for all $x, y \in E$.

In symbols (\forall = "for all", \exists = 'there exists"), uniform continuity requires

$$\forall \epsilon \exists \delta > 0 \ \forall x, y \in E : \ |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Compare this with continuity:

 $\forall x \in E \ \forall \epsilon \ \exists \delta > 0 \ \forall y \in E : \ |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$

Key difference: δ only depends on ϵ for uniform continuity, while it's a function of both ϵ and x for continuity.

(ロ) (同) (三) (三) (二)

Theorem

If $f: [a, b] \to \mathbb{R}$ is not uniformly continuous, then it's discontinuous at some point in [a, b]

Proof.

If f were NOT uniformly continuous, then

 $\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in [a, b] : |x - y| < \delta \ \text{AND} \ |f(x) - f(y)| > \epsilon.$

In other words, there exists $\epsilon > 0$ and two sequences (x_n) and (y_n) in [a, b] for which

$$|f(x_n)-f(y_n)| > \epsilon$$
 AND $|x_n-y_n| < \frac{1}{n}$.

By Bolzano–Weierstrass, these sequences have convergent subsequences (x_{n_k}) and (y_{n_k}) with a common limit $c \in [a, b]$ (Why?). Hence f is not continuous at c, since

$$0 < \epsilon < |f(x_{n_k}) - f(y_{n_k})| \le |f(x_{n_k}) - f(c)| + |f(c) - f(y_{n_k})|.$$

Brad Baxter Birkbeck College, University of London Real Analysis 4: Continuity