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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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Definition

Let

C =
{( a −b

b a

)
: a, b ∈ R

}
and

1 =

(
1 0
0 1

)
and I =

(
0 −1
1 0

)
.

Thus
C = {a1+ bI : a, b ∈ R}

and I is the matrix for clockwise rotation through π/2 radians.

We call C the set of rotation-enlargement matrices, for reasons
that will become clear later.
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Theorem (1 and J)

Every rotation–enlargement matrix can be uniquely written in the
form

a1+ bI.

Further, the relation
I2 = −1

implies the multiplication rule

(a11+ b1I) (a21+ b2I) = (a1a2 − b1b2)1+ (a1b2 + b1a2) I

and we observe that ZW = WZ for any Z ,W ∈ C because 1
commutes with every matrix.
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Theorem

C contains a copy of R:

{a1 : a ∈ R}.

The subset
IM = {bI : b ∈ R}

is the set of all real multiples of the rotation matrix I.

Example

If Z = a1+ bI, then

Z (a1− bI) = (a2 + b2)1.
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Definition

We write Z ∗ = a1− bI, so that

ZZ ∗ = Z ∗Z = (a2 + b2)1.

The modulus of Z is defined by |Z | =
√
ZZ ∗ =

√
a2 + b2.

Note that Z ∗ is also the matrix transpose of Z .

Theorem

If Z = a1+ bI and |Z | > 0, then the matrix Z is invertible and

Z−1 =
Z ∗

|Z |
.
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Theorem

If Z = a1+ bI and |Z | = 1, then Z−1 = Z ∗, i.e. ZZ ∗ = 1.

Exercise

The norm ‖v‖ of any vector

v ∈ R2 =

(
v1
v2

)

is just its Euclidean length, i.e. ‖v‖ =
√

v21 + v22 . Show that

‖Zv‖ = ‖v‖ when |Z | = 1.

Traditional notation: a + ib ≡ a1+ bI.

In geometrical terms, a1+ bI is a rotation-enlargement matrix:
the scale factor is

√
(a2 + b2) and the rotation angle θ satisfies

tan θ = b/a.
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