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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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Definition

Let f : [a, b]→ R. We say that f is differentiable at c ∈ (a, b) if
the limit

lim
h→0

f (c + h)− f (c)

h

exists, and if so we write

f ′(c) = lim
h→0

f (c + h)− f (c)

h
.

Useful alternative form: f is differentiable at c if there exists a
number f ′(c) ∈ R for which

f (c + h) = f (c) + f ′(c)h + e(h),

where the error e(h)→ 0 as h→ 0.
A differentiable function is one that is locally almost linear.

Brad Baxter Birkbeck College, University of London Real Analysis 5: Differentiation



Example (A differentiable function is continuous)

Given any ε > 0, choose δ > 0 so small that |e(h)| < ε/2 and
δ < ε/(2|f ′(c)|). Then, for |h| < δ,

|f (c + h)− f (c)| =
∣∣f ′(c)h + e(h)

∣∣
≤
∣∣f ′(c)

∣∣ |h|+ |e(h)|

<
ε

2
+
ε

2
= ε.

Theorem (Vector space of differentiable functions)

Let f : [a, b]→ R and g : [a, b]→ R be differentiable functions.
Any linear combination αf + βg is also differentiable.
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Theorem (Product Rule)

(fg)′ (x) = f ′(x)g(x) + f (x)g ′(x)

Proof.

f (x + h)g(x + h)− f (x)g(x)

h

=
f (x + h)g(x + h)− f (x)g(x + h) + f (x)g(x + h)− f (x)g(x)

h

=

(
f (x + h)− f (x)

h

)
g(x + h) + f (x)

(
g(x + h)− g(x)

h

)
→ f ′(x)g(x) + f (x)g ′(x),

as h→ 0.
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Theorem (Chain rule)

d

dx
f (g(x)) = f ′(g(x))g ′(x).

Proof: We know that

g(x + h) = g(x) + hg ′(x) + eg (h),

where eg (h)→ 0 as h→ 0, and

f (y + k) = f (y) + f ′(y)k + ef (k),

where ef (k)→ 0 as k → 0. Hence, setting y = g(x) and

k = hg ′(x) + eg (h)

we obtain

f (g(x + h)) = f (y + k)

= f (y) + kf ′(y) + ef (k)

= f (g(x)) +
(
hg ′(x) + eg (h)

)
f ′(g(x)) + ef (k)

= f (g(x)) + hg ′(x)f ′(g(x)) + E (h, k).
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Here
E (h, k) = eg (h)f ′(g(x)) + ef (k).

Now, as h→ 0, we also find that k → 0, and hence E (h, k)→ 0.
Hence f (g(x)) is differentiable, with derivative

d

dx
f (g(x)) = f ′(g(x))g ′(x).

Traditional calculus notation: If z = f (y) and y = g(x), then

dz

dx
=

dz

dy

dy

dx
.
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Example (Chain Rule 1)

If f (y) = 1/y , then f ′(y) = −1/y2 and

d

dx

1

g(x)
= − g ′(x)

g(x)2
.

Example (Chain Rule 2)

If f (y) = exp(y) and g(x) = −x2/2, then

f (g(x)) = e−x
2/2

and its derivative is given by

f ′(g(x))g ′(x) = −e−x2/2 · x .
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Example (Chain Rule 3)

Let y = f (x), for x ∈ R, and suppose that the inverse function
g(y) = x exists. Thus g(f (x)) = x and the chain rule implies

g ′(y)f ′(x) = 1,

i.e.

g ′(y) =
1

f ′(g(y))
,

for y ∈ {f (x) : x ∈ R}.

Exercise

Show that, if f ′(x) = f (x), for all x ∈ R, then the inverse function
g(y) satisfies

g ′(y) =
1

y
,

for y ∈ {f (x) : x ∈ R}.
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Theorem (Rolle’s Theorem)

Let f : [a, b]→ R be a continuous function which is differentiable
on (a, b). If f (a) = f (b) = 0, and if f is not identically zero, then
there exists c ∈ (a, b) such that f ′(c) = 0.
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Proof:
f is continuous, so it’s bounded and attains its bounds. Suppose
f (c) = sup[a,b] f and c ∈ (a, b). Hence

f (c) ≥ f (x), ∀x ∈ [a, b].

If f ′(c) > 0, then

0 < f ′(c) = lim
h→0

f (c + h)− f (c)

h
,

so f (c + h)− f (c) > 0 for all sufficiently small h > 0,
contradicting f (c) = sup[a,b] f .
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Similarly, if f ′(c) < 0, then

0 > f ′(c) = lim
h→0

f (c + h)− f (c)

h
.

Thus, if h < 0 and |h| is sufficiently small, then

f (c + h)− f (c)

h
< 0,

i.e.
f (c + h)− f (c) > 0,

on multiplying the inequality by the negative number h. This again
contradicts f (c) = sup[a,b] f . The only remaining case is
f ′(c) = 0.
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Theorem (Mean Value Theorem)

Let f : [a, b]→ R be a continuous function which is differentiable
on (a, b). Then there exists c ∈ (a, b) such that

f (b)− f (a)

b − a
= f ′(c).
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Figure: Mean Value Theorem for f (x) = x2 on [0, 1]
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Proof:
Let

L(x) = f (a) +

(
f (b)− f (a)

b − a

)
(x − a) ,

for x ∈ [a, b], L(x) is the linear function agreeing with f at the
end-points a and b of the interval. Further

L′(x) ≡ f (b)− f (a)

b − a
, for all x ∈ [a, b].

Define the error
E (x) = f (x)− L(x).
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Then E (a) = E (b) = 0, E : [a, b]→ R is continuous, and E is
differentiable on (a, b). Applying Rolle’s theorem, we deduce the
existence of at least one point c ∈ (a, b) for which E ′(c) = 0, that
is

f ′(c)− L′(c) = 0,

or

f ′(c) =
f (b)− f (a)

b − a
.

Example (Strictly increasing functions never take the same value
twice)

Suppose f ′(x) > 0 for all x ∈ (a, b). If a < x < y < b, then the
MVT tells us that, for some z ∈ [x , y ], we have

f (y)− f (x)

y − x
= f ′(z) > 0.

Hence f (y) > f (x).
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Another way to restate the Mean Value Theorem is as follows:
∀h > 0, ∃θ ∈ (0, 1) such that

f (a + h) = f (a) + hf ′(a + θh).

Example (Important MVT example)

Apply the Mean Value Theorem to f (x) = sin x :

f (x)− f (0)

x − 0
= f ′(α),

for some α ∈ [0, x ] depending on x , i.e.

sin x − sin 0

x − 0
=

sin x

x
= cosα.

Now x → 0 implies α→ 0. Hence

lim
x→0

sin x

x
= lim

α→0
cosα = 1.
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Definition (Taylor’s series)

Let f , f ′, f (2), . . . , f (n) all exist and be continuous in [a, b]. The
polynomial

pn(x) =
n−1∑
k=0

f (k)(a)

k!
(x − a)k , x ∈ R,

is called the n-th Taylor partial sum based at x = a, and is used to
approximate the function f (x). Further,

p
(k)
n (a) = f (k)(a), for 0 ≤ k ≤ n − 1.
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Example (Taylor series good locally but not globally)

Let f (x) = cos x and a = 0. Then

p5(x) = 1− x2

2!
+

x4

4!
.

p5(x) is an excellent approximation to cos x for small |x |:

cos 0.1 = 0.995004165278026 and p5(0.1) = 0.995004166666667.

It’s not good for larger |x |:

cos 1 = 0.540302305868140 but p5(1) = 0.541666666666667.

It’s useless for big |x |:

cos 10 = −0.839071529076452 but p5(10) = 367.666666666667.
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Figure: p5(x) = 1− x2/2! + x4/4! and cos x on [0, π]
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Theorem (Taylor’s theorem)

Let f , f ′, f (2), . . . , f (n) be continuous on [a, b]. Then, for any
x ∈ [a, b], we have

f (x) =
n−1∑
k=0

f (k)(a)

k!
(x − a)k +

(x − a)n

n!
f (n)(a + θh)

= pn(x) + en(x). (0.1)

for some θ ∈ (0, 1). Further, if |f (n)(x)| ≤ M for all x ∈ [a, b], then

|en(x)| ≤ (b − a)n

n!
M, for all x ∈ [a, b].
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Example (Taylor error bounds for cosine)

Returning to f (x) = cos x , its higher derivatives are either ± cos x
or ± sin x . Thus |f (n)(x)| ≤ 1, for any positive integer n and any
x ∈ R, and the error in Taylor’s theorem satisfies

|en(x)| ≤ xn

n!
,

for any positive x . In particular,

|e5(0.1)| ≤ 10−5/5! = 8.33333 · · · × 10−8.

On the other hand,

|e5(1)| ≤ 1/5! = 0.0083333 · · · ,

and
|e5(10)| ≤ 105/5! = 833.333 · · · .
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Proof of Taylor’s theorem:
The n-th Taylor partial sum satisfies

p
(j)
n (a) = f (j)(a), for j = 0, 1, . . . , n − 1.

Key trick: Define

φ(x) = f (x)− pn(x)− A(x − a)n/n!, for x ∈ [a, a + h],

where 0 < h < b− a, and choose A so that φ(a + h) = 0, i.e. solve

0 = f (a + h)− pn(a + h)− Ahn/n!.

Thus φ(a) = φ(a + h) = 0, so (Rolle) there exists h1 ∈ (0, h) for
which φ′(a + h1) = 0. Now

d j

dx j
(x − a)n = n(n − 1)(n − 2) · · · (n − j + 1)(x − a)n−j ,

and therefore vanishes when x = a and j = 0, 1, . . . , n − 1. Hence
we have

φ′(a) = φ′(a + h1) = 0.
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Applying Rolle to

φ′(a) = φ′(a + h1) = 0,

there exists h2 ∈ (0, h1) for which

φ(2)(a) = φ(2)(a + h2) = 0.

Repeatedly applying Rolle’s theorem, we find

φ(n−1)(a) = φ(n−1)(a + hn−1) = 0,

where 0 < hn−1 < hn−2 < · · · < h2 < h1 < h. Applying Rolle one
last time yields hn ∈ (0, hn−1) such that

φ(n)(a + hn) = 0.

But (Exercise)
φ(n)(x) = f (n)(x)− A.

Hence
A = f (n)(a + hn), where 0 < hn < h.

Then

en(a + h) = f (n)(a + θh)hn/n!, where hn = θh.
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Differentiable functions are extremely useful but they’re a set of
measure zero in continuous functions.

Theorem (Nonexaminable:)

The function

f (x) =
∞∑
n=0

sin
[
(n!)2x

]
n!

, x ∈ R,

is continuous but nowhere differentiable.
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