Real Analysis 6: The Standard Functions of Analysis

Brad Baxter Birkbeck College, University of London

June 17, 2023

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-40-0)

 QQ

 $\leftarrow \equiv$ \rightarrow

You can download these slides and the lecture videos from my office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), "How to Think about Analysis", Oxford University Press. J. C. Burkill (1978), "A First Course in Mathematical Analysis", Cambridge University Press.

A & Y B & Y B &

 Ω

The exponential function is defined by

$$
\exp z = \sum_{k=0}^{\infty} \frac{z^k}{k!}, \quad \text{for } z \in \mathbb{C},
$$

which is an absolutely convergent series by the ratio test:

$$
\left|\frac{a_{k+1}}{a_k}\right|=\frac{|z|}{k+1}\to 0,
$$

as $k\to\infty$, where $a_k = z^k/k!$. We now need to deduce its other vital properties from this definition. Notation: It's fine to write e^z or exp(z), but we shall keep to $exp(z)$ until we have derived further properties.

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 Ω

Theorem (Can differentiate power series term by term)

$$
f(z)=\sum_{n=0}^{\infty}a_nz^n
$$

is convergent for $|z| < R$, then

$$
f'(z)=\sum_{n=1}^{\infty}a_nnz^{n-1}.
$$

Proof.

If

Nonexaminable

 $\langle \overline{m} \rangle$ and \overline{m} and \overline{m} and \overline{m}

4日)

E

$$
\frac{d}{dz}\exp z=\exp z.
$$

Proof.

Here $a_n = 1/n!$, so that

$$
\frac{d}{dz} \exp z = \sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1}
$$

$$
= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1}
$$

$$
= \sum_{k=0}^{\infty} \frac{1}{k!} z^k
$$

$$
= \exp z.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Ε

Choose any $w \in \mathbb{C}$ and define

$$
f(z) = \exp(w - z) \exp(z), \qquad z \in \mathbb{C}.
$$

Then $f'(z) \equiv 0$ and $f(z) \equiv f(w)$.

Proof.

$$
f'(z) = -\exp(w-z)\exp(z) + \exp(w-z)\exp(z) = 0.
$$

Hence f is constant and $f(z) \equiv f(0) = \exp(w)$.

Theorem

$$
\exp(a+b) = \exp(a)\exp(b) \quad \text{ for any } a, b \in \mathbb{C}.
$$

Proof.

Let $w = a + b$ and $z = b$ in the previous theorem.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

イロト イ押 トイヨ トイヨト

 QQ

∍

Alternative.

We already know Taylor's theorem (last lecture) is valid for $f(x) = \exp(x)$:

$$
f(x+y)=\sum_{k=0}^{\infty}\frac{y^k}{k!}f^{(k)}(x)
$$

or

$$
\exp(x+y)=\sum_{k=0}^{\infty}\frac{y^k}{k!}\exp(x)=\exp(x)\exp(y).
$$

イ押 トイヨ トイヨト

4日)

E

For all $z \in \mathbb{C}$

$$
\exp(-z)\exp(z)=1.
$$

Thus the exponential function is never zero.

Proof.

$$
\exp(-z)\exp(z)=\exp(-z+z)=\exp 0=1.
$$

Theorem

If $x \in \mathbb{R}$, then $\exp x > 0$.

Proof.

$$
\exp x = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \exp(x/2)^2 > 0,
$$

because $exp(x/2)$ is real if x is real.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

K ロト K 御 ト K 君 ト K 君 K

П

 QQ

Theorem (exp is strictly increasing on \mathbb{R})

If $x, y \in \mathbb{R}$ and $x < y$, then $\exp x < \exp y$.

Proof.

By the Mean Value Theorem, there exists $c \in (x, y)$ for which

$$
\exp y - \exp x = (y - x) \exp c > 0.
$$

Thus $\exp : \mathbb{R} \to (0, \infty)$ is injective: if $\exp x = \exp y$, then $x = y$.

伊 ▶ ヨ ヨ ▶ ヨ ヨ

Let $e = \exp 1 = 2.71828182845904523536...$ Then $\exp n = e^n$, for any integer n. Further, $\exp(p/q) = \mathrm{e}^{p/q}$, for any integers p and $q \neq 0$. We define

$$
e^z=\exp(z)
$$

for all $z \in \mathbb{C}$.

Proof.

$$
\exp n = \exp \left(\underbrace{1 + \cdots + 1}_{n} \right) = (\exp 1)^n = e^n, \quad n \in \mathbb{N}.
$$

Further, $exp(-n) exp(n) = exp 0 = 1$ implies that $\exp(-n) = 1/\exp(n) = 1/(e^n)$, which is the definition of e^{-n} , and

$$
e^{p} = \exp p = \exp[(p/q)q] = \exp(p/q)^{q}.
$$

K ロト K 御 ト K 君 ト K 君 K

つくい

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

Theorem (Non-examinable)

 $e = exp 1$ is irrational.

NON-EXAMINABLE PROOF: Suppose $e = m/n$, where $m, n \in \mathbb{N}$ with no common factors. Now

$$
\frac{m}{n} = e = \sum_{k=0}^{\infty} \frac{1}{k!} = \sum_{k=0}^{n} \frac{1}{k!} + \sum_{k=n+1}^{\infty} \frac{1}{k!} \equiv S_1 + S_2.
$$

Multiply both sides by n!:

$$
m(n-1)! = \underbrace{n!S_1}_{\text{integer}} + n!S_2.
$$

何 ト ィヨ ト ィヨ ト

 2990

э

But

$$
n!S_2 = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \cdots
$$

$$
< \frac{1}{n+1} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} + \cdots
$$

$$
= \frac{1}{n},
$$

summing the geometric series (exercise). Hence

$$
m(n-1)! - n!S_1 = n!S_2.
$$

The LHS is an integer, while the RHS is a positive number in $(0, 1)$, which is a contradiction. \Box

御 ▶ イヨ ▶ イヨ ▶

 QQ

For any positive integer n and $x > 0$,

$$
\frac{x^n}{\exp x} < \frac{(n+1)!}{x}.
$$

Hence $\lim_{n\to\infty} x^n \exp(-x) = 0$.

Proof.

$$
\frac{x^n}{\exp x} = \frac{x^n}{1 + x + \frac{x^2}{2!} + \cdots + \frac{x^{n+1}}{(n+1)!} + \cdots} < \frac{x^n}{\frac{x^{n+1}}{(n+1)!}} = \frac{(n+1)!}{x}.
$$

Exercise

Show that $\exp x \to \infty$ as $x \to +\infty$ and $\exp x \to 0$ as $x \to -\infty$.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

イロト イ押 トイヨ トイヨ トー

E

The exponential function $\exp: \mathbb{R} \to (0,\infty)$ is a bijection.

Proof.

We already know that it's strictly increasing, so it's an injection. Further, for any $y > 0$, exp $y > 1 + y$ and, since exp $x \to 0$ as $x \to -\infty$, there exists $x_0 \in \mathbb{R}$ for which exp $x_0 < y$. Thus the function $f(x) = \exp x - y$ satisfies $f(y) > 1$ and $f(x_0) < 0$. Hence there must exist $x \in (x_0, y)$ for which exp $x = y$.

オート オートライン

Let L: $(0, \infty) \to \mathbb{R}$ denote the inverse of the exponential function, i.e. $L(exp x) = x$, for all $x \in \mathbb{R}$. Then

$$
\frac{d}{dy}L(y)=\frac{1}{y}, \qquad \text{for } y>0,
$$

and $L(1) = 0$.

Proof.

Differentiating $L(\exp x) = x$ using the Chain rule, we have

 $L'(\exp x)$ exp $x = 1$

and setting $y = \exp x$ gives $L'(y)y = 1$, Since $\exp(0) = 1$, we must have $L(1) = 0$.

Of course, $L(y) = \ln y$, the natural logarithm, but we shall keep to $L(y)$ for now. モー イモン イミン イ野

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

 QQ

$$
L(y) \to \infty
$$
 as $y \to \infty$. Further,

$$
L(ab) = L(a) + L(b)
$$

for any $a, b > 0$.

Proof.

Let $x = L(a)$ and $y = L(b)$. Then $\exp x = a$, $\exp y = b$ and

$$
\exp(x+y)=\exp x\exp y,
$$

i.e.

 $exp(L(a) + L(b)) = ab$,

or

$$
L(a) + L(b) = L(ab).
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

イロン イ団 メイモン イモン

 \equiv

Definition $(x^a$ for $a \in \mathbb{R})$

For $x > 0$, define

$$
r_a(x) = \exp(aL(x)).
$$

Theorem

For $m, n \in \mathbb{N}$

$$
r_n(x) = \exp(nL(x)) = \exp(L(x))^n = x^n
$$

and

$$
r_{m/n}(x)=\exp((m/n)L(x))=\exp(L(x))^{m/n}=x^{m/n}.
$$

Definition

Define
$$
x^a = r_a(x) = \exp(aL(x))
$$
 for $x > 0$ and $a \in \mathbb{R}$.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X [경

Example (Usual properties of exponents)

For $x, y > 0$,

$$
(xy)a = exp(aL(xy))
$$

= exp(a[L(x) + L(y)])
= exp(aL(x)) exp(aL(y))
= x^a · y^a.

Further

$$
x^{a+b} = \exp((a+b)L(x))
$$

=
$$
\exp(aL(x)) \exp(bL(x))
$$

=
$$
x^{a} \cdot x^{b}.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

E

Example

We also see that, for $x>0, \ x^1=\exp(L(x))=x.$ Further,

$$
(xb)a = exp(aL(xb))
$$

= exp(aL(exp(bL(x))))
= exp(abL(x))
= x^{ab}.

Exercise

Show that $x^{-1} = \exp(-L(x)) = 1/x$, for $x > 0$.

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

 \mathbf{I}

$$
\frac{a}{dx}x^a=ax^{a-1} \quad \text{ for } x>0, a\in\mathbb{R}.
$$

Proof.

$$
\frac{d}{dx} \exp(aL(x)) = \exp(aL(x))(a/x)
$$

= $a \exp(aL(x)) \exp(-L(x))$
= $a \exp((a-1)L(x))$
= ax^{a-1} .

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

 \Box

 299

メロメメ 御 メメ きょくきょうき

If $x > 0$, then $\frac{d}{da}x^a = L(x)x^a, \qquad a \in \mathbb{R}.$

Proof.

$$
\frac{d}{da}x^a = \frac{d}{da}\exp(aL(x)) = L(x)\exp(aL(x)) = L(x)x^a.
$$

П

 299

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

Example (Nonexaminable: Calculating $L(x)$)

If we choose $x = 1 + a$ and $|a| < 1$, then, setting $y = 1 + s$,

$$
L(1+a) = \int_1^{1+a} \frac{1}{y} dy = \int_0^a \frac{1}{1+s} ds.
$$

Now

$$
\frac{1}{1+s}=1-s+s^2-s^3+\cdots
$$

and it turns out that we can integrate power series term by term:

$$
L(1+a) = \int_0^a \frac{1}{1+s} ds
$$

=
$$
\int_0^a 1 - s + s^2 - s^3 + \cdots ds
$$

=
$$
a - \frac{a^2}{2} + \frac{a^3}{3} - \frac{a^4}{4} + \cdots
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

 QQ

Example

If we let $a = 1/2$, then

$$
L(1/2) = L(1 - a/2) = -\left(a + \frac{a^2}{2} + \frac{a^3}{3} + \cdots\right)
$$

and

$$
L(2) \approx \left(a+\frac{a^2}{2}+\frac{a^3}{3}+\cdots+\frac{a^n}{n}\right).
$$

If $n = 20$, then we find

 $L(2) \approx 0.6931471370510288$

which is correct to 5 decimal places.

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

4 17 18

 299

э

Definition

We define

$$
c(z) = \frac{1}{2} \Big(\exp(iz) + \exp(-iz) \Big)
$$

and

$$
s(z) = \frac{1}{2i} \Big(\exp(iz) - \exp(-iz) \Big).
$$

Of course, $c(z) = \cos z$ and $s(z) = \sin z$, but we shall keep to $c(z)$ and $s(z)$ while deducing their fundamental properties.

Theorem

$$
exp(iz) = c(z) + is(z)
$$
 and $exp(-iz) = c(z) - is(z)$

and $\exp 0 = 1$ implies $c(0) = 1$ and $s(0) = 0$. Further, $c(z)$ is an even function, i.e. $c(-z) = c(z)$, while $s(z)$ is an odd function, i.e. $s(-z) = -s(z)$, for all $z \in \mathbb{C}$.

∢ ロ ▶ (何 ▶ (日 ▶ (日 ▶) 目

$$
c(5i) = (\exp(5) + \exp(-5))/2 \approx 74.2099485
$$

and

$$
s(5i) = -i(\exp(-5) - \exp(5))/2 \approx 74.2032105777i.
$$

Hence

$$
c(5i)^2 = \frac{1}{4} \Big(\exp(10) + 2 + \exp(-10) \Big)
$$

and

$$
s(5i)^{2} = -\frac{1}{4} \Big(\exp(10) - 2 + \exp(-10) \Big).
$$

Thus

$$
c(5i)^2 + s(5i)^2 = 1.
$$

メロメ メタメ メミメ メミメー

È

 299

Exercise

Check that $c(5i)^2 + s(5i)^2 = 1$ numerically.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

We have

$$
c(z)^2 + s(z)^2 = 1
$$

for all $z \in \mathbb{C}$.

Proof.

$$
c(z)2 + s(z)2
$$

= $\frac{1}{4}$ (exp(2iz) + 2 + exp(-2iz) - exp(2iz) + 2 - exp(-2iz))
= 1.

 \Box

 299

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

We have $c(0) = 1$, $s(0) = 0$ and the differential equations

$$
c'(z) = -s(z) \quad \text{and} \quad s'(z) = c(z).
$$

Hence

$$
c''(z) + c(z) = s''(z) + s = 0.
$$

Proof.

For example, $c(z) = (1/2)(exp(iz) + exp(-iz))$ implies

$$
c'(z) = (1/2)(i \exp(iz) - i \exp(-iz)) = -s(z).
$$

The rest are left as exercises.

ス 何 ト ス ヨ ト ス ヨ ト ニ ヨ

and the first

 QQ

Theorem (The addition formulae for $c(z)$ and $s(z)$)

We have

$$
c(z + w) = c(z)c(w) - s(z)s(w)
$$

and
$$
s(z + w) = s(z)c(w) + c(z)s(w),
$$

for any $z, w \in \mathbb{C}$.

Proof.

$$
c(z+w) + is(z+w) = \exp(i(z+w))
$$

=
$$
\exp(iz) \exp(iw)
$$

=
$$
(c(z) + is(z)) (c(w) + is(w)).
$$

П

∍

 299

Now equate real and imaginary parts.

Exercise:

$$
c(z-w)=c(z)c(w)+s(z)s(w), \qquad \text{for all } z, w \in \mathbb{C}.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

$$
c(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots
$$

and

$$
s(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots,
$$

for any $z \in \mathbb{C}$.

Proof.

.

These are the real and imaginary parts of the absolutely convergent series

$$
\exp(iz) = \sum_{k=0}^{\infty} \frac{(iz)^k}{k!},
$$

using the fact that $i^2 = -1$, $i^3 = -i$ and $i^4 = 1$. Exercise: These series are absolutely convergent for all $z \in \mathbb{C}$, by the Ratio test

 QQ

 $\mathbf{A} \oplus \mathbf{B}$, and $\mathbf{B} \oplus \mathbf{A}$, and \mathbf{B}

There exists
$$
w \in (0, 2)
$$
 for which $c(w) = 0$.

Proof.

We know that $c(0) = 1$ and

$$
c(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots
$$

is an alternating series. Hence

$$
1-\frac{x^2}{2!}\leq c(x)\leq 1-\frac{x^2}{2!}+\frac{x^4}{4!},
$$

for $x \in \mathbb{R}$. If $x = 2$, then

$$
c(2) \le 1 - \frac{2^2}{2!} + \frac{2^4}{4!} = -1/3.
$$

Hence there is a root $w \in (0,2)$ by the Intermediate Value Theorem.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

Definition

Let
$$
\omega = \inf \{ w \in \mathbb{R}_+ : c(w) = 0 \}.
$$

Exercise

Use the addition formulae to prove that

$$
c(2z) = 2c(z)^2 - 1 = c(z)^2 - s(z)^2
$$
 and $s(2z) = 2s(z)c(z)$,

for any $z \in \mathbb{C}$. Hence find $c(\omega/2)$ and $s(\omega/2)$.

Theorem
$$
(c(2\omega) = -1, c(4\omega) = 1, s(2\omega) = s(4\omega) = 0)
$$

Now $c(\omega) = 0$ implies that

$$
c(2\omega)=2c(\omega)^2-1=-1
$$

and

$$
c(4\omega)=2c(2\omega)^2-1=1.
$$

Note that $c(z)^2 + s(z)^2 = 1$ $c(z)^2 + s(z)^2 = 1$ $c(z)^2 + s(z)^2 = 1$ implie[s](#page-30-0) that $s(2\omega) = s(4\omega) = 0$ $s(2\omega) = s(4\omega) = 0$ [.](#page-40-0)

 QQ

Theorem $(c(z)$ and $s(z)$ have period 4ω)

$$
c(z+4\omega)=c(z) \quad \text{and} \quad s(z+4\omega)=s(z)
$$

for all $z \in \mathbb{C}$.

Proof.

$$
c(z+4\omega)=c(z)c(4\omega)-s(z)s(4\omega)=c(z)
$$

and

$$
s(z+4\omega)=s(z)c(4\omega)+c(z)s(4\omega)=s(z).
$$

П

 299

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

0
$$
c(0) = 1, c(x) > 0
$$
 for $0 \le x < \omega$.

 $\bullet\;s'(x)=c(x)>0\;$ for $0\leq x<\omega,$ i.e. $\;$ is strictly increasing on $[0, \omega)$. Thus $1 = c(\omega)^2 + s(\omega)^2 = s(\omega)^2$ implies $s(\omega) = 1$.

$$
\bullet \ c''(x) = -c(x) < 0 \ \text{for} \ 0 \leq x < \omega.
$$

押 トメミ トメミ トー

 299

目

For all $z \in \mathbb{C}$:

\n- $$
c(z - \omega) = c(z)c(\omega) + s(z)s(\omega) = s(z).
$$
\n- $s(z + \omega) = s(z)c(\omega) + c(z)s(\omega) = c(z).$
\n

$$
\begin{aligned} \n\bullet \quad & c(z+2\omega) = c(z)c(2\omega) - s(z)s(2\omega) = -c(z), \text{ recalling that} \\ \n\bullet \quad & c(2\omega) = 2c(\omega)^2 - 1 = -1 \text{ and } s(2\omega) = 2s(\omega)c(\omega) = 0. \n\end{aligned}
$$

Theorem

We have $c(x) > 0$ for $-\omega < x < \omega$ and $c(x) = -c(x - 2\omega) < 0$ for $w < x < 3w$. Hence the real zeros of c are at $\{\omega + 2n\omega : n \in \mathbb{Z}\}\$ and the real zeros of s are at $\{2n\omega : n \in \mathbb{Z}\}\$.

何 ▶ (三) (三)

э

```
c and s have no zeros in \mathbb{C} \setminus \mathbb{R}.
```
Proof.

If
$$
s(x + iy) = 0
$$
, then $1 = \exp(2i(x + iy)) = \exp(2ix) \exp(-2y)$.
But $|\exp(2ix)|^2 = c(2x)^2 + s(2x)^2 = 1$. Hence $\exp(-2y) = 1$, which implies $y = 0$.

メロメメ 御 メメ きょく ミメー

活

$$
\exp(z+4i\omega)=\exp z
$$

for all $z \in \mathbb{C}$. In particular, $\exp(4i\omega) = 1$.

Proof.

$$
\exp(z+4i\omega)=\exp(z)\exp(4i\omega)=\exp(z)(c(4\omega)+is(4\omega)).
$$

We can stop pretending now: $c(z) \equiv \cos z$, $s(z) \equiv \sin z$ and $\omega = \pi/2.$

イロト イ押 トイヨト イヨト 一国

Example (Nonexaminable: Viète's Formula)

The addition formula for $sin x$ gives

$$
\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}
$$

= $2^2 \sin \frac{x}{4} \cos \frac{x}{4} \cos \frac{x}{2}$
= $2^3 \sin \frac{x}{8} \cos \frac{x}{8} \cos \frac{x}{4} \cos \frac{x}{2}$.

A simple induction provides Viète's formula (1593):

$$
\frac{\sin x}{2^n \sin \frac{x}{2^n}} = c_n c_{n-1} \cdots c_2 c_1,
$$

where $c_k = \cos(x/2^k)$.

 2990

э

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Exercise (Nonexaminable)

Prove that

$$
\lim_{n\to\infty}\frac{\sin x}{2^n\sin\frac{x}{2^n}}=\frac{\sin x}{x}.
$$

Theorem (Nonexaminable)

If $x = \pi/2$, then Viète's formula becomes

$$
\frac{2}{\pi}=\lim_{n\to\infty}c_1c_2\cdots c_{n-1}c_n,
$$

where

$$
c_k=\cos\frac{\pi}{2^{k+1}},\qquad k\in\mathbb{N}.
$$

Exercise

Find
$$
c_1
$$
 and show that $c_{k+1} = \sqrt{(1 + c_k)/2}$.

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

Theorem (cosh and sinh)

$$
\cos(iz) = \frac{1}{2} \left(e^z + e^{-z} \right) \equiv \cosh z.
$$

and

$$
\sin(iz) = \frac{1}{2i} \Big(e^{i(iz)} + e^{-i(iz)} \Big) = i \sinh z,
$$

where
$$
\cosh z = (e^z + e^{-z})/2
$$
 and $\sinh z = (e^z - e^{-z})/2$.

Example

$$
1 = \cos^2(iz) + \sin^2(iz) = \cosh^2 z - \sinh^2 z.
$$

メロトメ部 トメミトメミト

重

Example

$$
cosh(2z) = cos(2iz) = cos2(iz) - sin2(iz) = cosh2 z + sinh2 z.
$$

Example

$$
\sinh(2z) = -i \sin(2iz) = -2i \sin(iz) \cos(iz) = 2 \sinh z \cosh z.
$$

Brad Baxter Birkbeck College, University of London [Real Analysis 6: The Standard Functions of Analysis](#page-0-0)

イロメ イ団メ イミメ イモメー

重

Example

$$
\cos(x + iy) = \cos x \cos(iy) - \sin x \sin(iy)
$$

= cos x cosh y - i sin x sinh y.

Exercise

Show that

$$
\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y.
$$

Hence show that

$$
\tan(z^*) = [\tan z]^*,
$$

where $z = x + iy$ and $z^* = x - iy$.

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결