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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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Example (Integrating x2)

We have already seen that

n∑
k=1

k2 =
1

6
n(n + 1)(2n + 1).

Setting f (x) = x2, this implies that

1

n

n∑
k=1

f (k/n) =
1

6
(1 + 1/n)(2 + 1/n)→ 1

3
,

as n→∞. In the 17th century, this limit of a sum was called an
integral and expressed as ∫ 1

0
x2 dx =

1

3
.

∫
was a variant of the letter “s” and was the abbreviation of

summa, the Latin for “sum”.
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Definition

A dissection D of (a, b) is any finite set

a ≡ x0 < x1 < x2 < · · · < xn−1 < xn ≡ b.

We let Lk = xk − xk−1 and define the norm of the dissection by

L(D) = max
1≤k≤n

Lk .

If Mk = sup[xk−1,xk ] f and mk = inf [xk−1,xk ] f then the upper sum is

S(f ,D) =
n∑

k=1

MkLk

and the lower sum is

s(f ,D) =
n∑

k=1

mkLk .
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Example (Integrating x2)

Let

Dn =
{kt
n

: k = 0, 1, 2, . . . , n − 1, n
}
, so Lk = L = t/n.

Now f (x) = x2 is strictly increasing for x > 0, so

S(f ,Dn) =
n∑

k=1

(kt/n)2(t/n) =
t3

n3

n∑
k=1

k2

=
t3

6
(1 + 1/n)(2 + 1/n)

and

s(f ,Dn) = S(f ,Dn) + Lf (0)− Lf (t) = S(f ,Dn)− t3/n.

Then limn→∞ S(f ,Dn) = limn→∞ s(f ,Dn) = t3/3.
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Example (Important: geometric series dissection)

Let f (x) = 1/x2, x ∈ R \ {0} and let Dn = {qk : 0 ≤ k ≤ n}
where q = 21/n. Then (exercise)

S(f ,Dn) =
n−1∑
k=0

1

q2k
qk(q − 1) = (q − 1)

n−1∑
k=0

q−k .

Hence

S(f ,Dn) = (q − 1)

(
1− q−n

1− q−1

)
.

But q = 21/n, so

S(f ,Dn) =
1

2

(
q − 1

1− 1/q

)
=

q

2
→ 1

2

as n→∞.
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Example (Increasing functions are easy)

Let f : [a, b]→ R be a strictly increasing function and let

Dn =
{
xk = a +

k

n
(b − a) : k = 0, 1, 2, . . . , n − 1, n

}
.

Then Lk = L = (b − a)/n and

S(f ,Dn) = L
n∑

k=1

f (xk)

while

s(f ,Dn) = L
n−1∑
k=0

f (xk) = S(f ,Dn) + Lf (a)− Lf (b).
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Theorem

Let M = sup[a,b] f , m = inf [a,b] f . For any dissection D of [a, b],
we have Mk ≤ M and m ≤ mk , so that

m(b − a) ≤ s(f ,D) ≤ S(f ,D) ≤ M(b − a).

Hence
{S(f ,D) : D a dissection of [a, b]}

and
{s(f ,D) : D a dissection of [a, b]}

are bounded non-empty sets of reals. Let∫ b

a
f = inf

D
f and

∫ b

a
f = sup

D
f .
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Refining the dissection Let

D1 =
{
a ≡ x0 < x1 < · · · < xn−1 < xn ≡ b

}
.

Let D2 be a new dissection formed by adding a new point x ′k in
(xk−1, xk): we say D2 is a refinement of D1. Now define

M ′k ≡ sup
[xk−1,x

′
k ]
f ≤ Mk , m′k ≡ inf

[xk−1,x
′
k ]
f ≥ mk

and
M ′′k ≡ sup

[x ′k ,xk ]
f ≤ Mk , m′′k ≡ inf

[x ′k ,xk ]
f ≥ mk .

Let L′k = x ′k − xk−1 and L′′k = xk − x ′k .
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Theorem

s(f ,D1) ≤ s(f ,D2) ≤ S(f ,D2) ≤ S(f ,D1).

Proof.

S(f ,D2) = S(f ,D1) + M ′kL
′
k + M ′′k L

′′
k −MkLk

≤ S(f ,D1)

because
M ′kL

′
k + M ′′k L

′′
k ≤ Mk(L′k + L′′k) = MkLk .

The rest is an exercise.
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Theorem (Every upper sum exceeds every lower sum)

Let D1 and D2 be any two dissections of [a, b]. Then

S(f ,D1) ≥ s(f ,D2).

Proof.

Let D3 be the new dissection formed by taking all the distinct
points of D1 and D2 in increasing order: D3 is a refinement of both
D1 and D2. Hence

S(f ,D3) ≤ S(f ,D1) and s(f ,D3) ≥ s(f ,D2).

But
S(f ,D3) ≥ s(f ,D3),

so
S(f ,D1) ≥ s(f ,D2).
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Theorem ∫ b

a
f = inf

D
f ≥

∫ b

a
f = sup

D
f .

Proof.

For any dissection D2 we have∫ b

a
f = inf

D1

S(f ,D1) ≥ s(f ,D2).

Hence ∫ b

a
f ≥ sup

D2

s(f ,D2) =

∫ b

a
f .
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Definition (Riemann integrable)

Let f : [a, b]→ R. If∫ b

a
f = inf

D
f =

∫ b

a
f = sup

D
f ,

then we say that f is Riemann integrable.
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Example (Non-Riemann integrable function)

Let

f (x) =

{
1 if x ∈ R \Q
0 x ∈ Q.

For any dissection D of [a, b] we have S(f ,D) = b − a and
s(f ,D) = 0. Hence∫ b

a
f = inf

D
f = b − a > 0 =

∫ b

a
f = sup

D
f

and f is not Riemann integrable.

The need to integrate functions like f led to the Lebesgue integral
in the early 20th century, but it’s best to start with Riemann
integration first.
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Theorem (Increasing functions are Riemann integrable)

If f : [0, 1]→ R is an increasing function, then it’s Riemann
integrable.

Proof.

Let xk = k/n, for k = 0, 1, . . . , n be our dissection Dn. Then

S(f ,Dn) =
1

n

n∑
k=1

f (
k

n
)

while s(f ,Dn) = 1
n

∑n−1
k=0 f (kn ) = S(f ,Dn) + 1

n

(
f (0)− f (1)

)
.

Given any ε > 0, there exists N ∈ N for which

S(f ,Dn)− ε ≤ s(f ,Dn) ≤
∫ b

a
f ≤

∫ b

a
f ≤ S(f ,Dn).
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Theorem (Continuous functions are Riemann integrable)

Every continuous f : [a, b]→ R is Riemann integrable.

Proof.

Crucial fact: f is uniformly continous: given any ε > 0, there exists
δ > 0 for which |x − y | < δ implies |f (x)− f (y)| < ε, for any
x , y ∈ [a, b].

If D is any dissection of [a, b] for which L < δ, then Mk −mk < ε
and

S(f ,D)− s(f ,D) < ε(b − a).
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Example (Nonexaminable: Q has measure zero)

How do we measure the length of a set like Q ∩ (0, 1)? We saw
this in Lecture 1: Let q1, q2, . . . denote the rational numbers in
(0, 1). Given any ε > 0, let

In = (qn −
ε

2n+1
, qn +

ε

2n+1
), for n ∈ N.

Then qn ∈ In and the length of In is Ln = ε
2n . Thus Q ∩ (0, 1) is

contained in I1 ∪ I2 ∪ · · · and the “length” of Q ∩ (0, 1) should be
less than

L1 + L2 + L3 + · · · = ε

(
1

2
+

1

22
+

1

23
+ · · ·

)
= ε.

Since ε > 0 can be as small as we wish, we say that Q ∩ (0, 1) has
measure zero, while (0, 1) has measure 1.
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Definition (Nonexaminable: Outer measure and measure zero)

Given any subset A of (0, 1), we say that an open cover is any
sequence of open intervals Ik = (ak , bk) in (0, 1) for which

A ⊂ ∪∞k=1Ik .

We define the outer measure of A to be

µ∗(A) = inf
∞∑
k=1

`(Ik)

where the inf is over all open covers of A and `(Ik) = bk − ak . We
say that A has measure zero if µ∗(A) = 0.
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Example (Nonexaminable: Countable sets have measure zero)

Let x1, x2, x3, . . . be any real sequence and choose any ε > 0.
Define

Ik = (xk −
ε

2k+1
, xk +

ε

2k+1
).

Then (Ik) is an open cover of the sequence and

`(Ik) =
ε

2k
.

Hence
∞∑
k=1

`(Ik) = ε

and µ∗({x1, x2, . . .}) = 0.
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Theorem (Nonexaminable)

A function f : (a, b)→ R is Riemann integrable if and only if its
set of discontinuities has measure zero: we say that f is almost
everywhere continuous.

Theorem (Nonexaminable)

An increasing function is almost everywhere continuous.

Proof.

If an increasing function f : R→ R is discontinuous at a point
a ∈ R, then that corresponds to an open interval (a jump) in f (R).
The discontinuities of f therefore correspond to disjoint open
intervals of f (R). Every open interval contains a rational number,
so there are countably many disjoint open intervals.
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