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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
Cambridge University Press.
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Example

Let

f (x) =

{
1 if x = 0

0 x ∈ R \ {0}.

Then f is integrable on [−A,A], for any A > 0, and∫
f (x) dx = 0.

The idea is to choose the dissection

Dn = {−A,−1

n
, 0,

1

n
,A}.

Then S(f ,Dn) = 2/n and s(f ,Dn) = 0.
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Theorem

If f : [a, b]→ [0,∞) is continuous and f (c) > 0 for some
c ∈ [a, b], then ∫ b

a
f (x) dx > 0.

Proof.

There exists δ > 0 for which f (x) > f (c)/2 for

x ∈ I = (c − δ, c + δ) ∩ [a, b].

Thus ∫
I
f (x) dx >

f (c)

2

∫
I
dx > 0

and ∫ b

a
f (x) dx ≥

∫
I
f (x) dx

because f (x) ≥ 0 for all x ∈ [a, b].
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Theorem

If f : [a, b]→ [0,∞) is continuous and∫ b

a
f (x) dx = 0

then f (x) = 0 for all x ∈ [a, b].
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Theorem (Fundamental Theorem of Calculus)

Let f : (a, b)→ R be continuous and choose any u ∈ (a, b). Then
F : (a, b)→ R defined by the integral

F (t) =

∫ t

u
f (x) dx , t ∈ (a, b),

is differentiable in (a, b) and F ′(t) = f (t) for all t ∈ (a, b).

Proof.

|F (t + h)− F (t)− hf (t)| =

∣∣∣∣∫ t+h

t
f (x)− f (t) dx

∣∣∣∣
≤ h sup

x∈[t,t+h]
|f (x)− f (t)|.

Given any ε > 0, there exists h > 0 for which |f (x)− f (t)| < ε for
|x − t| ≤ h.

Brad Baxter Birkbeck College, University of London Real Analysis 8: Integration and Taylor Series



Theorem

Suppose f : (a, b)→ R is continuous, u ∈ (a, b) and c ∈ R. Then
there exists a unique solution to the differential equation

g ′(t) = f (t), for t ∈ (a, b),

such that g(u) = c .

Proof.

We know that

g(t) = c +

∫ t

u
f (x) dx

is a solution. However, if g1 and g2 are any two solutions, then
g ′1(t)− g ′2(t) = 0, so g2(t)− g1(t) is constant and, since
g1(u) = g2(u) = c , we deduce that this constant is zero.
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Theorem

Suppose g : (α, β)→ R is continuous and differentiable and [a, b]
is contained in the open interval (α, β). Then∫ b

a
g ′(x) dx = g(b)− g(a).

Proof.

Define

U(t) =

∫ t

a
g ′(x) dx − g(t) + g(a),

for α < t < β. Then

U ′(t) = g ′(t)− g ′(t) = 0,

i.e. U(t) is constant. But U(a) = 0, so this constant must be
zero.
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Theorem

Suppose f : [a, b]→ R is continuous and g : [γ, δ]→ R is
continuously differentiable (i.e. g ′ is continuous). Suppose further
that g([γ, δ]) ⊂ [a, b]. Then, for c , d ∈ [γ, δ],∫ g(d)

g(c)
f (s) ds =

∫ d

c
f (g(x))g ′(x) dx .

Proof.

Define

F (t) =

∫ t

a
f (u) du.

Then
d

dx
F (g(x)) = F ′(g(x))g ′(x) = f (g(x))g ′(x).

Hence ∫ g(d)

g(c)
f (s) ds = F (g(d))− F (g(c))

=

∫ d

c

d

dx
F (g(x)) dx

=

∫ d

c
f (g(x))g ′(x) dx .
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Theorem

Suppose that f : [a, b]→ R is continuously differentiable and
g : [a, b]→ R is continous. If G : [a, b]→ R is any primitive of g ,
i.e. G ′(x) = g(x), then∫ b

−a
f (x)g(x) dx = [f (x)G (x)]ba −

∫ b

a
f ′(x)G (x) dx .

Proof.

∫ b

a
f (x)g(x) dx +

∫ b

a
f ′(x)G (x) dx

=

∫ b

a
f (x)g(x) + f ′(x)G (x) dx

=

∫ b

a

d

dx
(f (x)G (x)) dx

= [f (x)G (x)]ba .

Brad Baxter Birkbeck College, University of London Real Analysis 8: Integration and Taylor Series



Theorem (Taylor 1)

I1(x) =

∫ x

a
f ′(t) dt = f (x)− f (a).

Theorem (Taylor 2)

If

I2(x) =

∫ x

a
(x − t) f (2)(t) dt,

then
I2(x) = f (x)− f (a)− f ′(a) (x − a) .

Proof.

I2(x) =
[
(x − t) f ′(t)

]t=x

t=a
+

∫ x

a
f ′(t) dt

= −f ′(a) (x − a) + f (x)− f (a)

= f (x)− f (a)− f ′(a) (x − a) .
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Theorem (Taylor 3)

Define

In(x) =

∫ x

a

(x − t)n−1

(n − 1)!
f (n)(t) dt, n ≥ 1.

Then

In(x) = −(x − a)n−1

(n − 1)!
f (n−1)(a) + In−1(x), for n ≥ 2.

Proof.

Integrate by parts:

In(x)

=

[
(x − t)n−1

(n − 1)!
f (n−1)(t)

]t=x

t=a

−
∫ x

a

[
− (x − t)n−2

(n − 2)!

]
f (n−1)(t) dt

= −(x − a)n−1

(n − 1)!
f (n−1)(a) + In−1(x), for n ≥ 2.
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Theorem (Taylor 4)

f (x) =
n−1∑
k=0

(x − a)k

k!
f (k)(a) + In(x).

Proof.

In(x) = −(x − a)n−1

(n − 1)!
f (n−1)(a) + In−1(x)

= −(x − a)n−1

(n − 1)!
f (n−1)(a)− (x − a)n−2

(n − 2)!
f (n−2)(a) + In−2(x)

= · · ·

= −
n−1∑
k=1

(x − a)k

k!
f (k)(a) + I1(x)

= f (x)−
n−1∑
k=0

(x − a)k

k!
f (k)(a).
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Example

Let f (x) = (1 + x)−1, for x ∈ (−1, 1). Then

f (n)(x) = (−1)nn!(1 + x)−n−1.

Thus f (n)(0) = (−1)nn! and

pn(x) =
n−1∑
k=0

f (k)(0)

k!
xk =

n−1∑
k=0

(−1)kxk .

The limit is then
1

1 + x
=

n−1∑
k=0

(−1)kxk ,

for |x | < 1.
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Example (Binomial theorem)

Let
f (x) = (1 + x)n,

for x ∈ R, where n is a positive integer. Then

f (k)(x) = n(n − 1)(n − 2) · · · (n − k + 1)(1 + x)n−k ,

for k ≤ n, but f (k)(x) ≡ 0, for k > n. Hence Taylor’s theorem
gives

(1 + x)n =
n∑

k=0

n(n − 1)(n − 2) · · · (n − k + 1)

k!
xk .
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Example

Let f (x) = (1 + x)−1/2, for x ∈ (−1, 1). Then

f ′(x) = (−1/2)(1 + x)−3/2,

f (2)(x) = (−1/2)(−3/2)(1 + x)−3/2,

f (3)(x) = (−1/2)(−3/2)(−5/2)(1 + x)−7/2,

f (4)(x) = (−1/2)(−3/2)(−5/2)(−7/2)(1 + x)−9/2,

f (k)(x) =
(−1)k(2k − 1)(2k − 3) · · · 5 · 3 · 1(1 + x)−(2k+1)/2

2k
.

Thus the Taylor series is

(1+x)−1/2 =
∞∑
k=0

(
(−1)k(2k − 1)(2k − 3)(2k − 5) · · · 5 · 3 · 1

2kk!

)
xk

Brad Baxter Birkbeck College, University of London Real Analysis 8: Integration and Taylor Series



Example

Further

(−1)k(2k − 1)(2k − 3) · · · 5 · 3 · 1
2kk!

=
(−1)k(2k)!

2kk!(2k)(2k − 2)(2k − 4) · · · 4 · 2

=
(−1)k(2k)!

4k (k!)2

= (−1)k
(

2k

k

)
4−k ,

whence

(1 + x)−1/2 =
∞∑
k=0

(−1)k
(

2k

k

)
4−kxk ,

for |x | < 1.
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Exercise

Show that

(1 + x)1/2 = 1 +
1

2
x − 1

8
x2 + · · ·

and (1 + x)1/3 = 1 +
1

3
x − 1

9
x2 + · · · .
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Example

(n + 1)1/2 = n1/2
(

1 +
1

n

)1/2

= n1/2
(

1 +
1

2n
− 1

8n2
+ · · ·

)
= n1/2 +

1

2n1/2
− 1

8n3/2
+ · · · ,

which implies that

an =
√
n + 1−

√
n =

1

2n1/2
− 1

8n3/2
+ · · · ,

and thus an → 0 as n→∞.
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Exercise

Use Taylor series to study the convergence, or otherwise, of

bn = (n + 1)1/3 − n1/3,

as n→∞.
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Definition (Infinite Integrals)

If f : [a,∞)→ R is integrable on [a, b] for every b > a and∫ b

a
f (x) dx → L

as b →∞, then we say that∫ ∞
a

f (x) dx

exists with value L.
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Theorem

If f : [a,∞)→ [0,∞) is integrable on [a, b] for every b > a, then∫ ∞
a

f (x) dx

exists if and only if there exists K for which∫ b

a
f (x) dx ≤ K for all b > a.

Proof:
If the infinite integral exists, then

un =

∫ n

a
f (x) dx for n ≥ a.

is an increasing convergent sequence of positive numbers. Hence
it’s bounded: there exists K for which un ≤ K for all n. Given any
b > a, we therefore have

∫ b
a f (x) dx ≤ uN ≤ K for N > b.
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Conversely, suppose (un) is convergent with limit L. For any b > a,
there exists N ∈ N for which

uN ≤
∫ b

a
f (x) dx ≤ uN+1.

Hence ∫ b

a
f (x) dx → L

as b →∞.
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